5. State-Space Systems

- Representing systems as first-order ODES
- Systems as maps
- Controllability and observability
- The order of a realization
- Minimal realizations
- Matrix-valued transfer functions
- Realizations for matrix transfer functions
This form is often called state-space form.

\[
\dot{x}(t) = Ax(t) + Bu(t)
\]

where

- \(x(t) \in \mathbb{R}^n\) is called the state.
- \(u(t) \in \mathbb{R}^m\) is called the input signal or forcing function.
- \(A \in \mathbb{R}^{n \times n}\) is the generator or dynamics matrix.
- \(B \in \mathbb{R}^{n \times m}\) is the forcing function.

System of differential equations

Linear first-order ODEs
Mechanical system with \(k \) degrees of freedom undergoing small motions:

\[
\ddot{q}(t) + \dot{\dot{q}}(t) + \dddot{q}(t) = F(t)
\]

where
- \(q(t) \in \mathbb{R}^k \) represents the configuration or generalized coordinates of the system.
- \(M \) is the mass matrix.
- \(D \) is the damping matrix.
- \(K \) is the stiffness matrix.
- \(W \) is the mass matrix.
- \(f(t) \) represents the configuration or generalized coordinates of the system.

State-space form

Let the state be \(x(t) = \begin{bmatrix} q(t) & \dot{q}(t) \end{bmatrix}^T \),

\[
\dot{x}(t) = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}D \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ M^{-1} \end{bmatrix} f(t)
\]

Where

\[
(\dot{t})A = (\dot{t})bX + (\dot{t})bD + (\dot{t})bW
\]
Autonomous behavior

System behavior when \(u(t) = 0 \) for all \(t \).

The solution is given by

\[
(0x)\Phi = (\dot{t})x
\]

\(\Phi \) is called the state transition matrix. The map \(\Phi \) is linear, hence we can represent it as a matrix.

\(\Phi \) maps initial state to state at time \(t \).

Notes

- \(\Phi \) maps \(\mathbb{R}^n \) to \(\mathbb{R}^n \).
- \(\Phi \) is linear. Hence, we can represent it as a matrix.

System behavior when \(u = 0 \) for all \(t \).
The state transition matrix is \(\Phi_t = e^{At} \) where the matrix exponential is
\[
e^M = I + M + \frac{M^2}{2} + \frac{M^3}{3!} + \frac{M^4}{4!} + \cdots
\]
This series always converges.

Properties

- \(e^M \) is invertible.
- \(e^0 = I \) for the zero matrix.
- \((e^M)^* = (e^M)^* \)
- If \(M \) and \(N \) are square, then \(e^M e^N = e^{M+N} \)

Autonomous behavior

\[W = N W \iff N^\vartheta W^\vartheta = N + W^\vartheta \]

where the matrix exponential is
\[W^\vartheta = \Phi \]

The state transition matrix is
The system \(\dot{x}(t) = Ax(t) \) is called **internally stable** if \(x(t) \to 0 \) as \(t \to \infty \) for every initial condition \(x(0) \).

Theorem

The system is internally stable if and only if all of the eigenvalues of \(A \) have strictly negative real part. That is, if \(\Re(\lambda) < 0 \) for all \(\lambda \in \text{spec}(A) \).

The **spectrum** of a matrix is the set of its eigenvalues:

\[
\text{spec}(A) = \{ \lambda \in \mathbb{C} ; \lambda I - A \text{ is singular} \}
\]

For every initial condition \(x(0) \),

\[
\infty \leftarrow t \quad \text{as} \quad 0 \leftarrow (t)x
\]

is called internally stable if \((t)x \forall t \) is.

The system **stability**
Reachable States

The set of reachable states at time $t > 0$ is

$$\begin{align*}
\mathcal{R}_t &= \{ \xi \in \mathbb{R}^n \mid \text{there exists } u \in \mathbb{R}^m \text{ such that } x(t) = \xi \} \\
\end{align*}$$

Properties

\mathcal{R}_t is a subspace of \mathbb{R}^n.

\mathcal{R}_t is independent of time $t > 0$.

\mathcal{R}_t is called the controllable subspace.

\mathcal{R}_t is a subspace of \mathbb{R}^n.

The system is called controllable if $\mathcal{R}_t = \mathbb{R}^n$.

Follows from linearity.

Reachable States
The controllability matrix is the image of the controllability matrix.

The controllable subspace is the image of the controllability matrix.

\[
\mathcal{R}^c = \text{image}(\mathcal{C})
\]

Main Theorem

\[
\begin{bmatrix}
\mathcal{C} \mathcal{A} \mathcal{B} & \mathcal{A} \mathcal{B} & \cdots & \mathcal{A}^{n-1} \mathcal{B}
\end{bmatrix} = \mathcal{C} \mathcal{A} \mathcal{B}
\]

The controllability matrix is

Controllability
Systems with inputs and outputs

General system form

\[\dot{x}(t) = A x(t) + B u(t) \]
with initial condition \(x(0) = 0 \)

\[y(t) = C x(t) + D u(t) \]

Here \(x(t) \in \mathbb{R}^n \), \(u(t) \in \mathbb{R}^m \), and \(y(t) \in \mathbb{R}^p \).

System \(G \) is a black box mapping signals to signals \(y \).

Standard interpretation

\[u(t) \in \mathbb{R}^m \text{ and } y(t) \in \mathbb{R}^p \]

Here \(x(0) \in \mathbb{R}^n \), and \((t) \in \mathbb{R} \).

with initial condition \(x \)

\[(t) d(t) + (t) x(t) = (t) y(t) \]

General system form

Systems with inputs and outputs

Write \(G : \mathcal{X} \rightarrow \mathcal{Y} \) is a \((t) \) map.

If \(x(0) = 0 \) then \(G \) is a linear map.

Draw diagram with blocks and arrows.
We will see more on this later.

This has no state-space form.

\[(q)\dot{n} = (q)\ddot{u}\]

Not every system can be represented in state-space form. E.g.

Caveat

State-space form

\[
\begin{bmatrix}
0 \\
I \\
0 \\
\vdots \\
0
\end{bmatrix} = B
\]

\[
\begin{bmatrix}
1^{-u} I & \cdots & 1 & 0
\end{bmatrix} = C
\]

\[
\begin{bmatrix}
1^{-u} I & \cdots & 1 & 0
\end{bmatrix} = A
\]

General systems of ODEs

\[
n_0 C + n_1 C + \cdots + 1^{-u} n_{1-u} C = \ddot{h}_0 p + \ddot{h}_1 u + \cdots + (1-u) \ddot{h}_{1-u} p + (u) \ddot{h}
\]
There is a unique solution for x_0 if and only if $\ker(\Phi) = \{0\}$

$$n^T V - \Phi = 0 x_0$$

To find x_0 we need to solve the equation.

Given y and u, can we uniquely determine x?

The question of observability

The map on signals y and u, we have

$$\Psi_t x_0 = y - \Lambda_t u$$

Here Ψ_t and Λ_t are linear maps.

As a map on signals y and u, we have

$$\Psi_t x_0 = y - \Lambda_t u$$

The solution is

$$0 x = (0) x$$

with initial condition

$$x = x$$

General system form

Observability
Observability

The set of unobservable states at time $t > 0$ is

\[\mathcal{U}_t = \ker(\Psi_t) = \{ \xi \in \mathbb{R}^n ; \Psi_t \xi = 0 \} \]

- \mathcal{U}_t is a subspace of \mathbb{R}^n.

- If $\xi \in \mathcal{U}_t$, then the initial condition x_0 and the initial condition $x_0 + \xi$ will produce the same output on $[0, t]$ for every u.

- If $\xi \not\in \mathcal{U}_t$, then \mathcal{U}_t is a subspace of \mathbb{R}^n.

The observability matrix is

\[\begin{bmatrix} u \mathcal{O} & \vdots & \mathcal{O} \\ \vdots & \ddots & \vdots \\ \mathcal{O} & \cdots & \mathcal{O} \end{bmatrix} = \mathcal{O} \quad \text{where} \quad \ker(\mathcal{O}) = \mathcal{U}_t \]

Facts

- $\mathcal{U}_t = \ker(\mathcal{O} \mathcal{C} \mathcal{A})$ where $\mathcal{O} \mathcal{C} \mathcal{A} = \begin{bmatrix} \mathcal{C} \\ \mathcal{C} \mathcal{A} \\ \vdots \\ \mathcal{C} \mathcal{A}^{n-1} \end{bmatrix}$, the observability matrix.

- Write $\mathcal{N} \mathcal{C} \mathcal{A} = \ker(\mathcal{O} \mathcal{C} \mathcal{A})$.

- \mathcal{N} is independent of time.

If $\mathcal{O} \mathcal{C} \mathcal{A}$ has full rank, then the system is called observable.

\[\begin{bmatrix} u \mathcal{O} & \vdots & \mathcal{O} \\ \vdots & \ddots & \vdots \\ \mathcal{O} & \cdots & \mathcal{O} \end{bmatrix} = \mathcal{O} \quad \text{where} \quad \ker(\mathcal{O}) = \mathcal{U}_t = \mathcal{N} \]
Suppose G_1 and G_2 are state-space systems, with zero initial conditions. G_1 and G_2 are called equivalent if
State coordinate changes

Let G be the system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

Let $z(t) = T x(t)$ for some invertible matrix $T \in \mathbb{R}^{n \times n}$. Then

$$\dot{z}(t) = TAT^{-1}z(t) + T Bu(t)$$

$$y(t) = CT^{-1}z(t) + Du(t)$$

Let C be the system

State coordinate changes

$$(t)\dot{z} + (t)z = (t)\dot{h}$$

$$(t)z + (t)x = (t)h$$

$$(t)\dot{x} + (t)x = (t)x$$
State coordinate changes

\[
\begin{align*}
(\mathcal{T})n + (\mathcal{T})z \begin{bmatrix} z & I^\bot \end{bmatrix} &= (\mathcal{T})\hat{y} \\
(\mathcal{T})n \begin{bmatrix} z \\ I \end{bmatrix} + (\mathcal{T})z \begin{bmatrix} z & 0 \\ 0 & I^\bot \end{bmatrix} &= (\mathcal{T})\hat{z}
\end{align*}
\]

we can represent the same map from \(u \) to \(y \) by

\[
(\mathcal{T})x \begin{bmatrix} I & I \\ z & I \end{bmatrix} = (\mathcal{T})xL = (\mathcal{T})z
\]

Changing coordinates to

\[
(\mathcal{T})n + (\mathcal{T})x \begin{bmatrix} 0 & I \end{bmatrix} = (\mathcal{T})\hat{y}
\]

\[
(\mathcal{T})n \begin{bmatrix} 0 \\ I \end{bmatrix} + (\mathcal{T})x \begin{bmatrix} z & z^\bot \\ I & 0 \end{bmatrix} = (\mathcal{T})\hat{x}
\]

Example

\[
\begin{align*}
(\mathcal{T})n + (\mathcal{T})z \begin{bmatrix} z & I^\bot \end{bmatrix} &= (\mathcal{T})\hat{y} \\
(\mathcal{T})n \begin{bmatrix} z \\ I \end{bmatrix} + (\mathcal{T})z \begin{bmatrix} z & 0 \\ 0 & I^\bot \end{bmatrix} &= (\mathcal{T})\hat{z}
\end{align*}
\]

\[
(\mathcal{T})x \begin{bmatrix} I & I \\ z & I \end{bmatrix} = (\mathcal{T})xL = (\mathcal{T})z
\]

Changing coordinates to

\[
(\mathcal{T})n + (\mathcal{T})x \begin{bmatrix} 0 & I \end{bmatrix} = (\mathcal{T})\hat{y}
\]

\[
(\mathcal{T})n \begin{bmatrix} 0 \\ I \end{bmatrix} + (\mathcal{T})x \begin{bmatrix} z & z^\bot \\ I & 0 \end{bmatrix} = (\mathcal{T})\hat{x}
\]

Controllability and observability are preserved under state coordinate changes. That is, \(\text{rank}(CAB) \) \(\text{rank}(COA) \) are unchanged.

Transforms from one realization for \(G \) to another.

\[
(\mathcal{T})n \begin{bmatrix} A & B, C^\top L, D \end{bmatrix} \leftrightarrow (\mathcal{T})n \begin{bmatrix} A', B', C^\top L', D' \end{bmatrix}
\]
System equivalence

When are two systems equivalent?

Theorem: Suppose \((A_1, B_1, C_1, D_1)\) and \((A_2, B_2, C_2, D_2)\) are realizations for \(G_1\) and \(G_2\) respectively. Then when are two systems are equivalent?

System equivalence

Proof

We have, for any realization \((A', B', C', D')\)

\[
\begin{align*}
(0)^n A + \frac{\partial}{\partial t} n B e^{(t-\tau)A} C & = \int_{0}^{t} \frac{\partial}{\partial \tau} \int_{0}^{\tau} \frac{\partial}{\partial \tau} B e^{(\tau-\tau')A} C d\tau' d\tau \\
& = (t)^n A
\end{align*}
\]

for all \(t\), since \(D_1^n u(0) = D_2^n u(0)\) for all functions \(u\) and for all \(t\).

We need to show that

\[
(0)^n A = (0)^n B e^{A t} C - C_2 e^{A_2 t} B_2
\]

for all \(t\) and for all \(n\) and for all \(t\)

\[
C_1 e^{A_1 t} B_1 = C_2 e^{A_2 t} B_2
\]

\[
\begin{align*}
\Leftrightarrow & \quad C_1 \text{ and } C_2 \text{ are equivalent} \\
\Leftrightarrow & \quad G_1 \text{ and } G_2 \text{ are equivalent for all } t
\end{align*}
\]

\[
\begin{align*}
\Leftrightarrow & \quad G_1 \text{ and } G_2 \text{ are equivalent for all } t
\end{align*}
\]

for all \(t\) and for all \(n\) and for all \(t\)

\[
\begin{align*}
\Leftrightarrow & \quad C_1 \text{ and } C_2 \text{ are equivalent} \\
\Leftrightarrow & \quad G_1 \text{ and } G_2 \text{ are equivalent for all } t
\end{align*}
\]

for all \(t\) and for all \(n\) and for all \(t\)

\[
\begin{align*}
\Leftrightarrow & \quad C_1 \text{ and } C_2 \text{ are equivalent} \\
\Leftrightarrow & \quad G_1 \text{ and } G_2 \text{ are equivalent for all } t
\end{align*}
\]
The proof in the matrix valued case is similar, which contradicts our assumption that the above integral is zero.

\[0 < \lim_{\tau \to 0} |(\tau)n| \int_{\tau-\tau}^{\tau+\tau} = \lim_{\tau \to 0} (\tau)n(\tau - I + 0\tau)A \int_{\tau-\tau}^{\tau+\tau} \]

and choose \(0 \neq (I)n \). This gives \(n = I + 0\tau \).

To show a contradiction, assume the above integral is zero for all \(t \) and \(u \), yet there is some \(t_0 \geq 0 \) for which \(F(t_0) \neq 0 \). Pick \(u(t) = F(t_0 + 1 - t) \) and choose \(t = t_0 + 1 \). This gives

\[\int_{t_0}^{t_0+1} \int_{t_0}^{t_0+1} F(t_0+1-\tau)u(\tau)d\tau = \int_{t_0}^{t_0+1} |u(\tau)|^2 d\tau > 0 \]

which contradicts our assumption that the above integral is zero.

The proof in the matrix valued case is similar.
Removing uncontrollable states

The dynamic order or state-dimension of a state-space system is the dimension \(n \) of the generator matrix \(A \).

If a system is not controllable, then there exists an equivalent lower-order realization.

Theorem: If \(\dim(C) = r \), then there exists an equivalent lower-order realization.

\[
\begin{bmatrix}
0 \\
\mathbf{B}
\end{bmatrix} \begin{bmatrix}
\mathbf{I} & 0 \\
\mathbf{I} & \mathbf{A}
\end{bmatrix} \begin{bmatrix}
\mathbf{C}_1 \\
\mathbf{C}_2
\end{bmatrix} = \mathbf{B} \mathbf{A}^r \mathbf{C}
\]

Equivalence follows from the representation, because

This representation is called controllability form.

Notes

1. The lower-order system \((\bar{A}_{11}, \bar{B}_1, \bar{C}_1, D)\) is equivalent to \((A, B, C, D)\), and is controllable.

\[
\begin{bmatrix}
0 \\
\mathbf{B}
\end{bmatrix} = \mathbf{B} \mathbf{I} = \mathbf{B}
\]

\[
\begin{bmatrix}
\mathbf{C}_1 \\
\mathbf{C}_2
\end{bmatrix} = \mathbf{I} \mathbf{C} = \mathbf{C}
\]

\[
\begin{bmatrix}
\mathbf{A} \\
\mathbf{0}
\end{bmatrix} \begin{bmatrix}
\mathbf{A} \\
\mathbf{I}
\end{bmatrix} = \mathbf{I} \mathbf{A} \mathbf{L} = \mathbf{A}
\]

Theorem: If \(\dim(C) = r \), then we can choose coordinates so that

A system is not controllable, then there exists an equivalent lower-order realization.

Generator matrix \(A \).

The dynamic order or state-dimension of a state-space system is the dimension of the state-space states.
Removing uncontrollable states

Example

The state component x_2 is uncontrollable. With initial condition $x(0) = 0$, the state component $x_2(0) = 0$ for all t. The second-order state-space system

$$\dot{x}(t) = \begin{bmatrix} -1 & -3 \\ 0 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 10 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} -1 & 0 \end{bmatrix} x(t)$$

represents the same map as the first-order system

$$\dot{z}(t) = -z(t) + u(t)$$

$$y(t) = -x(t)$$

The state component x_2 is uncontrollable. With initial condition $x(0) = 0$, the state component $x_2(t) = 0$ for all t.

The second-order state-space system

$$(\dot{t})x = \begin{bmatrix} 0 & 1 \\ -1 \end{bmatrix} = (\dot{t})\hat{x}$$

$$(\dot{t})n + (\dot{t})z = (\dot{t})\hat{z}$$

represents the same map as the first-order system

$$(\dot{t})x \begin{bmatrix} 0 & 1 \\ -1 \end{bmatrix} = (\dot{t})\hat{x}$$

$$(\dot{t})n \begin{bmatrix} 0 \\ 1 \end{bmatrix} + (\dot{t})x \begin{bmatrix} 0 & -1 \\ -1 \end{bmatrix} = (\dot{t})x$$

The second-order state-space system

$$(\dot{t})x \begin{bmatrix} 0 & 1 \\ -1 \end{bmatrix} = (\dot{t})\hat{x}$$

$$(\dot{t})n \begin{bmatrix} 0 \\ 1 \end{bmatrix} + (\dot{t})x \begin{bmatrix} 0 & -1 \\ -1 \end{bmatrix} = (\dot{t})x$$

removing uncontrollable states
We first show that the controllable subspace is A-invariant.

$x \in C_{AB} \Rightarrow Ax \in C_{AB}$

This holds because, if $x \in C_{AB}$, then $Ax \in C_{AB}$.
Now choose coordinates $x_L = z$ such that

$$\left\{ 0 = z^T \in \mathbb{R}^n, \exists \in C \right\} = \mathbb{R}^m C$$

Proof continued
The ideas of controllability and observability are called dual.

Duality

As for controllability, noting that the unobservable subspace is A-invariant.

Proof

This representation is called observability form.

The lower-order system \((A_{11}, B_1, C_1, D_1)\) is equivalent to \((A, B, C, D)\), and is observable.

\[
\begin{bmatrix}
A_{11} \\
B_1
\end{bmatrix} = B
\]

\[
\begin{bmatrix}
0 & I_{r} \\
\nu & A
\end{bmatrix} = \mathcal{A}
\]

If \(\dim(\mathcal{N}(A)) = n - r\), then we can choose coordinates so that removing unobservable states...
with the last equality following from the previous one at $t = 0$.

For all k

$$C^1 A^k V_1 B = C^2 A^k V_2 B$$

\Leftarrow

For all t and k

$$C^1 A^k e^{A^1 t} B = C^2 A^k e^{A^2 t} B$$

\Leftarrow

For all t and k

$$C^1 e^{A^1 t} A^k V_1 B = C^2 e^{A^2 t} A^k V_2 B$$

\Leftarrow

For all t

$$C^1 e^{A^1 t} V_1 B = C^2 e^{A^2 t} V_2 B$$

\Leftarrow

For the direction, we know

$$\cdots + \frac{1}{2} C^1 A^2 V_1 B + C A V_1 B + C B = C^2 A^2 V_2 B + C A V_2 B + C B$$

Proof: The direction follows immediately from the previous Lemma, since the matrices $C^1 A B, C A V_1 B, \ldots$ are called the Markov parameters for G.

For all k

$$D^1 = D^2$$

\Leftarrow\qquad G^1 and G^2 are equivalent

Then G^2 respectively. Then

Theorem: Suppose that $V_1 B, I, C^1, C^2, D^1$ and $V_2 B, I, C^2, C^1, D^2$ are realizations for G^1 and G^2, respectively. Then another characterization of equivalence
The minimal n for which a realization exists is a property of the map G.

- We will use the equality of the Markov parameters to prove the \Rightarrow direction.
- We have already shown the \Leftarrow direction.

Notes

- We have already shown the \Rightarrow direction.
- We will use the equality of the Markov parameters to prove the \Leftarrow direction.
- The minimum n for which a realization exists is a property of the map G.

Theorem: A realization for G with smaller state dimension.

A realization (A', B', C', D') for a system G is called minimal if there does not exist a minimal realizations.

\[(A', B', C', D') \text{ is minimal if and only if } \forall (A, B, C) \text{ is observable and } (A, C) \text{ is controllable} \]
Proof

We need to show the direction. Suppose \((A^r, B^r, C^r, D^r)\) is controllable and observable, then it is an equivalent realization. We will show that if \((A^1, B^1, C^1, D^1)\) is an equivalent realization, then it must have order at least \(n\). Hence \(\text{rank}(CA_1A^1B^1)\) has at least \(u\) rows, and therefore \(A^1\) has at least \(n\) columns. Hence \(\text{rank}(CA_1A^1B^1)\geq u\), which implies that \(\text{rank}(OCA_1A^1B^1)\geq u\), from the left Sylvester inequality.

\[
\begin{bmatrix}
\begin{bmatrix}
OCA_1A^1B^1 \\
\vdots \\
OCA_1A^1B^1\\
C_1A^1B^1 \\
C_1A^1B^1
\end{bmatrix}
\end{bmatrix}
= \begin{bmatrix}
[\begin{bmatrix}
A^1 & \cdots & A^1 \\
B^1 & A^1 & \cdots \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \ddots \\
C_1 & \cdots & C_1
\end{bmatrix}
\end{bmatrix}
\begin{bmatrix}
A^1 & \cdots & A^1 \\
B^1 & A^1 & \cdots \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \ddots \\
C & \cdots & C
\end{bmatrix}
\]

For any two matrices \(P\) and \(Q\), we have Sylvester's inequality:

\[
\text{rank}(PQ) \leq \min\{\text{rank}(P), \text{rank}(Q)\}
\]

We know that \(\text{rank}(OCA_1A^1B^1)\geq u\), from the left Sylvester inequality. Hence \(\text{rank}(OCA_1A^1B^1)\geq u\), which implies that \(\text{rank}(OCA_1A^1B^1)\geq n\) and \(\text{rank}(CA_1A^1B^1)\geq n\) from the right Sylvester inequality. Hence \(\text{rank}(OCA_1A^1B^1)\geq u\), from the left Sylvester inequality.

\[
\begin{bmatrix}
(\partial)\{\text{rank}\} \geq (\partial)\text{rank} \geq u - (\partial)\text{rank} + (\partial)\text{rank}
\end{bmatrix}
\]

We need to show the direction. Suppose \((A^r, B^r, C^r, D^r)\) is controllable and observable, then it is an equivalent realization. We will show that if \((A^1, B^1, C^1, D^1)\) is an equivalent realization, then it must have order at least \(n\). Hence \(\text{rank}(CA_1A^1B^1)\) has at least \(u\) rows, and therefore \(A^1\) has at least \(n\) columns. Hence \(\text{rank}(CA_1A^1B^1)\geq u\), which implies that \(\text{rank}(OCA_1A^1B^1)\geq u\), from the left Sylvester inequality.

\[
\begin{bmatrix}
\begin{bmatrix}
OCA_1A^1B^1 \\
\vdots \\
OCA_1A^1B^1\\
C_1A^1B^1 \\
C_1A^1B^1
\end{bmatrix}
\end{bmatrix}
= \begin{bmatrix}
[\begin{bmatrix}
A^1 & \cdots & A^1 \\
B^1 & A^1 & \cdots \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \ddots \\
C_1 & \cdots & C_1
\end{bmatrix}
\end{bmatrix}
\begin{bmatrix}
A^1 & \cdots & A^1 \\
B^1 & A^1 & \cdots \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \ddots \\
C & \cdots & C
\end{bmatrix}
\]

We need to show the direction. Suppose \((A^r, B^r, C^r, D^r)\) is controllable and observable, then it is an equivalent realization. We will show that if \((A^1, B^1, C^1, D^1)\) is an equivalent realization, then it must have order at least \(n\). Hence \(\text{rank}(CA_1A^1B^1)\) has at least \(u\) rows, and therefore \(A^1\) has at least \(n\) columns. Hence \(\text{rank}(CA_1A^1B^1)\geq u\), which implies that \(\text{rank}(OCA_1A^1B^1)\geq u\), from the left Sylvester inequality.

\[
\begin{bmatrix}
(\partial)\{\text{rank}\} \geq (\partial)\text{rank} \geq u - (\partial)\text{rank} + (\partial)\text{rank}
\end{bmatrix}
\]
\[A + B_{1-}(V - Is)C = (s) \begin{bmatrix} D \\ B \end{bmatrix} \]

Transfer functions

Recall the Laplace transform of \(f(t) \):

\[\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st}f(t)dt \]

- The Laplace transform is a linear map.
- \(\mathcal{L}\{f(t)\} \) has a Laplace transform, then it is given by \(\mathcal{L}\{f(t)\} \).
- Applying the Laplace transform to the initial condition \(x(0) = 0 \):

\[(s)f + (s)x = (s)\hat{y} \]

\[(s)f + (s)x = (s)x \]

\[(s)f = (s)x \]

\[\mathcal{L}\{f(t)\} = (s)f \]
Transfer functions

The function $G: \mathbb{C}^m \rightarrow \mathbb{C}^p$ is called the transfer function:

$$G(s) = \frac{C(sI - A)^{-1}B + D}{0q + s^1q + \cdots + s^{n-1}q + 1 - ws^nq} = (s)b$$

It is called real-rational if the coefficients are real. It is called proper if $n \geq m$, and strictly proper if $n < m$.

Rational functions

• A scalar function $g: \mathbb{C} \rightarrow \mathbb{C}$ is called rational if

$$\frac{0q + \cdots + 1 - ws^nq}{0q + s^1q + \cdots + 1 - ws^nq} = (s)b$$

• If $n \geq m$, the function is called proper.

Transfer functions

$D + B_{1-VI} = (s)c$
We call \(\hat{G} \) proper if each of its entries is proper.

\[
\forall \quad A - Is^{-1} = \left[\text{cofactor of element } ij \right] \times \frac{(A - Is)^{\text{det}}}{I} = \left[1 - (A - Is) \right]
\]

where each cofactor is the determinant of a submatrix of \(A - Is \).

The function \(\hat{G} \) corresponding to a state-space system is rational, since we call the matrix-valued function \(\hat{G} \) rational if each of its entries is rational.
Given G^1 and G^2 defined by state-space representations (A^1, B^1, C^1, D^1) and (A^2, B^2, C^2, D^2) respectively, given G^1 and G^2 are defined by state-space representations (A^1, B^1, C^1, D^1) and (A^2, B^2, C^2, D^2) respectively,

The if part follows by equality as $s \to \infty$.

\[\mathcal{L} \{ A^1 - (A^2 - IS^2)C^1 \} = A^1 - (A^2 - IS^2)C^1 \]

which holds if and only if

\[\mathcal{L} \{ A^1 - (A^2 - IS^2)C^1 \} = A^1 - (A^2 - IS^2)C^1 \]

since the Laplace transform of $e^{A^1 t}$ is $(sI - A^1)^{-1}$, this is equivalent to

\[\mathcal{L} \{ A^1 - (A^2 - IS^2)C^1 \} = A^1 - (A^2 - IS^2)C^1 \]

We know G^1 and G^2 are equivalent
Given a scalar-valued (often called SISO) strictly proper transfer function $\hat{g}(s)$, there exists a state-space realization (A, B, C, D) which has order n.

$$0 = A \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix} = B$$

$$\begin{bmatrix} 1 - u_0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 - u_{n-1} \\ 0 & \cdots & 1 \end{bmatrix} = C$$

$$\begin{bmatrix} 1 - u_0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} = A$$

Proof

It is...
If \(\hat{g} \) is proper but not strictly proper, we can write it as

\[
\hat{g}(s) = \hat{g}_1(s) + D(s)
\]

where \(\hat{g}_1 \) is strictly proper.

\[
A + (s)\hat{b} = (s)\hat{b}
\]

If \(\hat{b} \) is proper but not strictly proper, we can write it as non-strictly proper.
To realize a matrix-valued transfer function \tilde{G}, we can do so in blocks.

Suppose we have realizations $$(A_1, B_1, C_1, D_1)$$ for \tilde{G}_1 and $$(A_2, B_2, C_2, D_2)$$ for \tilde{G}_2.

Then a realization for G is

$$\begin{bmatrix}
\begin{array}{c|c}
\tilde{G}_1 & 0 \\
\hline
0 & \tilde{G}_2
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c|c}
A_1 & 0 \\
\hline
0 & A_2
\end{array}
\end{bmatrix}
= \begin{bmatrix}
\begin{array}{c|c}
(s)\tilde{G}_1 & (s)\tilde{G}_2 \\
\hline
(s)C_1 & (s)C_2
\end{array}
\end{bmatrix}
$$
Suppose \(\hat{G}(s) = \begin{bmatrix} \hat{G}_1(s) & \hat{G}_2(s) \end{bmatrix} \). Then a realization for \(G \) is

\[
\begin{bmatrix}
A_2 & 0 & 0 & 0 \\
B_2 & A_1 & 0 & 0 \\
B_1 & 0 & A_1 & 0 \\
0 & 0 & 0 & D_1
\end{bmatrix}
\begin{bmatrix}
(s) \hat{G}_1 \\
(s) \hat{G}_2 \\
(s) \hat{G}_1 \\
(s) \hat{G}_2 \\
\end{bmatrix}
= (s) \hat{G}
\]
A procedure for realization of a rational transfer matrix \(\hat{G} \) is

1. Realize each element \(\hat{G}_{ij} \), which is a scalar transfer function.
2. Realize the columns.
3. Realize the row of columns.

Caveat

The resulting realization may be non-minimal. For example,

\[
\begin{bmatrix}
0 & 0 & I \\
\frac{s}{2} & I & 0 \\
I & 0 & -s \\
0 & I & 0
\end{bmatrix} = (s) \hat{G}
\]

The previous construction leads to

\[
\begin{bmatrix}
I + \frac{s}{2} & I + s \\
I & 2
\end{bmatrix} = (s) \hat{G}
\]

but a lower-order realization is

\[
\begin{bmatrix}
0 & 0 & I \\
\frac{s}{2} & I & 0 \\
I & 0 & -s \\
0 & I & 0
\end{bmatrix} = (s) \hat{G}
\]
We need a notion of approximation for systems. More later...

\[
\begin{bmatrix}
0.0 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
= 0 \\
1
\end{bmatrix}
\]

which has singular values \(\sigma \)

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
= p A B = p A C
\]

\[
(\tau) x \begin{bmatrix} 0 & 1 \end{bmatrix} = (\tau) \dot{x}
\]

\[
(\tau) n \begin{bmatrix} 0 & 1 \end{bmatrix} + (\tau) x \begin{bmatrix} 2 & 1 \\
3 & -1 \end{bmatrix} = (\tau) x
\]

It can go wrong in similar ways; e.g.

Platonic theory of systems

Analogous to the idea of rank of a matrix, we have the notion of order of a linear system.

View systems as linear operators on signal spaces. The map between inputs and outputs defines the system.

Every state-space system has a proper transfer function representation.

Every proper rational transfer matrix has a state-space realization.