Engr210a Lecture 3: Singular Values and LMIs

- Matrix norm
- Singular value decomposition (SVD)
- Minimal-rank approximation
- Sensitivity of eigenvalues and singular values
- Linear matrix inequalities (LMIs)
- Semidefinite programming problems
Norm of a matrix

Suppose $A \in \mathbb{R}^{m \times n}$. The matrix norm of A is

$$
\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}
$$

Also called the operator norm or spectral norm.

Gives the maximum gain or amplification of A.

Properties

- Consistent with usual Euclidean vector norm; if $b \in \mathbb{R}^n$, then
 $$
 \|b\| = \sqrt{\lambda_{\text{max}}(b^*b)} = \sqrt{b^*b}
 $$

- For any x, we have $\|Ax\| \leq \|A\|\|x\|$.

- Scaling: $\|cA\| = |c|\|A\|$

- Triangle inequality: $\|A + B\| \leq \|A\| + \|B\|$.

- Definiteness: $\|A\| = 0 \iff A = 0$.

- Submultiplicative property: $\|AB\| \leq \|A\|\|B\|$.
Singular value decomposition

Given $A \in \mathbb{C}^{m \times n}$, we can decompose it into the singular value decomposition (SVD)

$$A = U \Sigma V^*$$

where

- $U \in \mathbb{C}^{m \times m}$ is unitary,
- $V \in \mathbb{C}^{n \times n}$ is unitary,
- $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

Note that if $m \neq n$, the matrix Σ is not square; it has the form

$$\Sigma = \begin{bmatrix}
\sigma_1 & 0 & \cdots & 0 \\
0 & \sigma_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & & \sigma_n \\
\end{bmatrix} \quad \text{or} \quad \Sigma = \begin{bmatrix}
\sigma_1 & 0 & 0 & \cdots & 0 \\
0 & \sigma_2 & & \cdots & \\
\vdots & & \ddots & \vdots & \\
0 & \cdots & & \sigma_m & 0 \\
\end{bmatrix}$$

We choose $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0$, where $p = \min\{m, n\}$.
Singular value decomposition 2

Given $A \in \mathbb{C}^{m \times n}$, we can decompose it into the singular value decomposition (SVD)

$$A = U \Sigma V^*$$

where $U \in \mathbb{C}^{m \times m}$ is unitary, $V \in \mathbb{C}^{n \times n}$ is unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

With $U = [u_1 \ u_2 \ \cdots \ u_m]$ and $V = [v_1 \ v_2 \ \cdots \ v_n]$, we have

$$A = U \Sigma V^* = \sum_{i=1}^{p} \sigma_i u_i v_i^*$$

- σ_i are the singular values of A.
- u_i are the left singular vectors of A.
- v_i are the right singular vectors of A.

The number of nonzero singular values equals the rank of A.
Singular value decomposition 3

Given \(A \in \mathbb{C}^{m \times n} \), we can decompose it into the *singular value decomposition* (SVD)

\[
A = U \Sigma V^* \tag{1}
\]

where \(U \in \mathbb{C}^{m \times m} \) is unitary, \(V \in \mathbb{C}^{n \times n} \) is unitary, and \(\Sigma \in \mathbb{R}^{m \times n} \) is diagonal.

We have

\[
AA^* = U \Sigma V^* V \Sigma^* U^* = U \Sigma \Sigma^* U^* \tag{2}
\]

Hence

- \(u_i \) are the eigenvectors of \(AA^* \)
- \(\sigma_i = \sqrt{\lambda_i(AA^*)} \) are the eigenvalues of \(AA^* \)

Similarly \(A^*A = V \Sigma^* U^* U \Sigma V^* = V \Sigma^* \Sigma V^* \) and \(v_i \) are the eigenvectors of \(A^*A \), with \(\sigma_i = \sqrt{\lambda_i(A^*A)} \) the eigenvalues of \(A^*A \).

If \(r = \text{rank}(A) \), then

- \(\{u_1, \ldots, u_r\} \) are an orthonormal basis for \(\text{range}(A) \).
- \(\{v_1, \ldots, v_r\} \) are an orthonormal basis for \(\ker(A)^\perp \).
Linear mapping interpretation of SVD

The SVD decomposes the linear mapping into

- Compute coefficients along directions v_i.
- Scale coefficients by σ_i.
- Generate output along directions u_i.

Note that, unlike the eigen-decomposition, input and output directions are different. The maximum singular-value, σ_1 gives the norm of A.

$$\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sigma_1$$

The minimum singular-value, σ_p gives the minimum gain of the matrix A.

$$\min_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sigma_p$$
Geometric interpretation of SVD

The matrix $A \in \mathbb{R}^{m \times n}$ maps the unit sphere in \mathbb{R}^n to an ellipsoid in \mathbb{R}^m.

$$\{ x \in \mathbb{R}^n ; \|x\| = 1 \} \rightarrow \{ y ; y = Ax, x \in \mathbb{R}^n, \|x\| = 1 \}$$

The semi-axes of the ellipse are u_i, with length σ_i.

Note that the ellipse will be degenerate if A is not surjective.
Algebraic interpretation of SVD

The SVD captures the *numerical rank* of a matrix $A \in \mathbb{C}^{m \times n}$.

$$\min \left\{ \| A - B \| ; \; B \in \mathbb{C}^{m \times n}, \mathrm{rank}(B) \leq k \right\} = \sigma_{k+1}$$

Theorem: The minimal rank k approximant to A is given by

$$A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^*$$

Hence, if a matrix $A \in \mathbb{R}^{10 \times 10}$ has singular values

$$\sigma_1 = 100, \quad \sigma_2 = 35, \quad \sigma_3 = 10, \quad \sigma_4 = 2$$

and $\sigma_5 \leq 0.00001$, then we might say its *numerical rank* is 4.

Example:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4.01 \end{bmatrix}$$

has singular values $\sigma_1 = 5, \sigma_2 = 0.002$. Its optimal rank 1 approximant is

$$A = \begin{bmatrix} 0.9984 & 2.0008 \\ 2.0008 & 4.0096 \end{bmatrix}$$
Proof: We have

\[A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^* \]

hence

\[U^* A_k V = \text{diag}(\sigma_1, \ldots, \sigma_k, 0, \ldots, 0). \]

So

\[U^*(A - A_k)V = \text{diag}(0, \ldots, 0, \sigma_k + 1, \ldots, \sigma_p) \]

and hence \(\|A - A_k\| = \sigma_{k+1} \).

Now we wish to show that no matrix \(B \) can do better. Suppose \(\text{rank}(B) = k \) for some \(B \), and let \(\{x_1, \ldots, x_{n-k}\} \) be an orthonormal basis for \(\ker(B) \). Since \((n-k) + (k+1) > n \),

\[\text{span}\{x_1, \ldots, x_{n-k}\} \cap \text{span}\{v_1, \ldots, v_{k+1}\} \neq \emptyset \]

Let \(z \) be a unit vector in this intersection. Then \(Bz = 0 \), and

\[Az = U\Sigma V^* z = \sum_{i=1}^{k+1} \sigma_i (v_i^* z) u_i \quad \text{with} \quad \sum_{i=1}^{k+1} (v_i^* z)^2 = 1 \]

hence

\[\|A - B\|^2 \geq \|(A - B)z\|^2 = \|Az\|^2 = \sum_{i=1}^{k+1} \sigma_i^2 (v_i^* z)^2 \geq \sigma_{k+1}^2 \]
Example: use of low rank approximants

Suppose \(A \in \mathbb{R}^{10000 \times 10000} \) is dense. Then computing the matrix-vector product \(Ax \) is computationally expensive; \(10^8 \) multiplications.

But if \(A \) has singular values

\[
\sigma_1 = 100, \quad \sigma_2 = 35, \quad \sigma_3 = 10, \quad \sigma_4 = 2
\]

and \(\sigma_k \leq 0.001 \) for \(k \geq 5 \), then the optimal rank 4 approximant is

\[
A_4 = \sum_{i=1}^{4} \sigma_i u_i v_i^*\]

Then, let

\[
b = A_4 x = 100(v_1^*x)u_1 + 35(v_2^*x)u_2 + 10(v_3^*x)u_3 + 2(v_4^*x)u_4
\]

and we have

\[
\|Ax - b\| \leq \|A - A_4\| \|x\| \leq 0.001\|x\|
\]

which gives a relative error of 0.1% in \(4 \times 10^4 \) multiplications.
Sensitivity of eigenvalues vs. singular values

Eigenvalues

Suppose

\[A = \begin{bmatrix} 0 & I_9 \\ 0 & 0 \end{bmatrix} \quad E = \begin{bmatrix} 0 & 0 \\ 10^{-10} & 0 \end{bmatrix} \]

We have

\[\lambda_i(A) = 0 \text{ for all } i \quad \text{and} \quad \lambda_{\text{max}}(A + E) = 0.1; \]

A change of order 10^{-10} in A resulted in a change of order 0.1 in its eigenvalues.

The position of the poles of a system can be extremely sensitive to the values of system parameters.

Singular values

Since $\|A\| = \sigma_1(A)$, we know from the triangle inequality that

\[\sigma_1(A + E) \leq \sigma_1(A) + \sigma_1(E) \]

In this case, $\sigma_1(A) = 1$ and $\sigma_1(E) = 10^{-10}$.
Linear matrix inequalities (LMIs)

An inequality of the form

\[F(x) < Q \]

where

- The variable \(x \) takes values in a real vector space \(V \).
- The mapping \(F : V \rightarrow \mathbb{H}^n \) is linear.
- \(Q \in \mathbb{H}^n \).

Properties

- A wide variety of control problems can be reduced to a few standard convex optimization problems involving linear matrix inequalities (LMIs).
- The resulting computational problems can be solved \textit{numerically} very efficiently, using \textit{interior-point methods}.
- These algorithms have many important properties, including small computation time, global solutions, provable lower bounds, certificates proving infeasibility, . . .
- An LMI formulation often provides an effective solution to a problem.
LMIs in vector form

Every LMI can be represented as

\[F(x) = x_1 F_1 + x_2 F_2 + \cdots + x_m F_m < Q \]

In this case, \(x \in \mathbb{R}^m \) and \(F_i \in \mathbb{H}^n \).

Example

The inequality

\[
\begin{bmatrix}
 x_1 - 3 & x_1 + x_2 & -1 \\
 x_1 + x_2 & x_2 - 4 & 0 \\
 -1 & 0 & x_1
\end{bmatrix} < 0
\]

is an LMI.

In standard form, we can write this as

\[
x_1 \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} < \begin{bmatrix} 0 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 0 \end{bmatrix}
\]
Semidefinite programming (SDP)

Feasibility problems

Given the LMI

\[F(x) = x_1 F_1 + x_2 F_2 + \cdots + x_m F_m < Q \]

- Find a feasible point \(x \in \mathbb{R}^m \) such that the LMI is satisfied, or
- determine that there is no such \(x \); that is, that the LMI is infeasible.

Linear objective problems

A general problem form is

\[
\begin{align*}
\text{minimize} & \quad c^* x \\
\text{subject to} & \quad x_1 F_1 + x_2 F_2 + \cdots + x_m F_m < Q \\
& \quad Ax = b
\end{align*}
\]

- Linear cost function
- Equality constraints
LMIs define convex subsets of V

Theorem: The set

$$
C = \left\{ x \in V \; ; \; F(x) < Q \right\}
$$

is convex.

Proof: We need to show

$$
x_1, x_2 \in C, \quad \theta \in [0, 1] \quad \implies \quad \theta x_1 + (1 - \theta) x_2 \in C
$$

Since F is linear,

$$
F(\theta x_1 + (1 - \theta) x_2) = \theta F(x_1) + (1 - \theta) F(x_2) < \theta Q + (1 - \theta) Q = Q
$$

Alternative proof: The image of a convex set under an affine map is convex.
LMIs as polynomial inequalities

Suppose $A \in \mathbb{H}^n$. Let $A_k \in \mathbb{R}^{k \times k}$ be the submatrix of A consisting of the first k rows and columns.

Fact: $A > 0 \iff \det(A_k) > 0$ for $k = 1, \ldots, n$.

Example:

\[
\begin{bmatrix}
3 - x_1 & -(x_1 + x_2) & 1 \\
-(x_1 + x_2) & 4 - x_2 & 0 \\
1 & 0 & -x_1
\end{bmatrix} > 0 \iff (3 - x_1)(4 - x_2) - (x_1 + x_2)^2 > 0 \quad (A)
\]

\[
-x_1((3 - x_1)(4 - x_2) - (x_1 + x_2)^2) - (4 - x_2) > 0 \quad (B)
\]

\[
3 - x_1 > 0 \quad (C)
\]
LMIs with matrix variables

Consider the inequality

\[
\begin{bmatrix}
A^*X +XA & XB \\
B^*X & -I
\end{bmatrix} < 0
\]

Defining \(F : \mathbb{S}^n \rightarrow \mathbb{S}^m \) by

\[
F(X) = \begin{bmatrix}
A^*X +XA & XB \\
B^*X & 0
\end{bmatrix} \quad \Rightarrow \quad F(X) < \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}
\]

Notes

- The most common form of LMI in systems and control.
- Easily recognizable.
- Can be more efficient.
- Accepted by software, such as the LMI Control Toolbox.
- Multiple LMIs \(G_1(x) < 0, \ldots, G_n(x) < 0 \) can be converted to one (block-diagonal) LMI

\[
\text{diag}(G_1(x), \ldots, G_n(x)) < 0
\]
LPs can be cast as LMIs

The general linear program

\[
\begin{align*}
\text{minimize} & \quad c^* x \\
\text{subject to} & \quad a_1^* x < b_1 \\
& \quad a_2^* x < b_2 \\
& \quad \vdots \\
& \quad a_n^* x < b_n
\end{align*}
\]

can be expressed as the SDP

\[
\begin{align*}
\text{minimize} & \quad c^* x \\
\text{subject to} & \quad \begin{bmatrix}
a_1^* x - b_1 \\
a_2^* x - b_2 \\
\vdots \\
a_n^* x - b_n
\end{bmatrix} < 0
\end{align*}
\]
Schur Complements

Recall

\[Q > 0 \text{ and } M - RQ^{-1}R^* > 0 \iff \begin{bmatrix} M & R \\ R^* & Q \end{bmatrix} > 0 \]

Example: The matrix \(X \in \mathbb{S}^n \) satisfies

\[A^*X - XA + C^*C + XBB^*X < 0 \]

if and only if

\[\begin{bmatrix} A^*X + XA + C^*C & XB \\ B^*X & -I \end{bmatrix} < 0 \]

This is extremely useful and will reappear often.
Some standard LMI}s

Suppose $F_i \in \mathbb{S}^n$, and

$$Z(x) = x_1 F_1 + x_2 F_2 + \cdots + x_m F_m$$

Matrix norm constraint:

$$\|Z(x)\| < 1 \iff \begin{bmatrix} I & Z(x) \\ Z^*(x) & I \end{bmatrix} > 0$$

Matrix norm minimization:

$$\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad \begin{bmatrix} tI & Z(x) \\ Z^*(x) & tI \end{bmatrix} > 0
\end{align*}$$

Maximum eigenvalue minimization:

$$\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad Z(x) - tI < 0
\end{align*}$$