8. More Groebner Bases

- Example of nonzero remainders
- Formulation of Groebner basis in terms of division
- Cancellation
- Syzygy polynomials
- Computational test for Groebner bases
- The Buchberger algorithm
- The ascending chain condition
- Minimal and reduced Groebner bases
- Gaussian elimination
example

suppose $I = \text{ideal}\{f_1, f_2\}$, where

$$f_1 = x^2 + z^2 - 1 \quad f_2 = x^2 + y^2 + z^2 - 2z - 3$$

suppose $p = x^2 + \frac{1}{2}y^2z - z - 1$; we have $p \in I$ since

$$p = \left(-\frac{1}{2}z + 1\right)f_1 + \left(\frac{1}{2}z\right)f_2$$

but if we divide p by (f_1, f_2) we find

$$p = 1f_1 + 0f_2 + r \quad \text{where} \quad r = \frac{1}{2}y^2z - z^2 - z$$

why wasn’t the remainder zero? because the terms of p and r are not divisible by either $\text{lt}(f_1)$ or $\text{lt}(f_2)$
example continued

if for every \(p \in I \),

\[
\text{we can remove } \text{lt}(p) \text{ by division by one of the } f_i \\
i.e., \text{lt}(f_i) \text{ divides } \text{lt}(p)
\]

then we would have remainder \(r = 0 \) for every \(p \in I \)

as we’ll see, this is the key Groebner basis property

in this case we can easily show \(\{f_1, f_2\} \) is not a Groebner basis for \(I \); let

\[
p = f_1 - f_2 = -y^2 + 2z - 2
\]

then \(p \in I \) but neither \(\text{lt}(f_i) \) divides \(y^2 \)
Groebner basis

the set of polynomials $\{g_1, \ldots, g_m\} \subset I$ is a Groebner basis for ideal I if and only if

\[
\text{for all } f \in I \quad \text{there is some } i \text{ such that } \text{lt}(g_i) \text{ divides } \text{lt}(f)
\]

we’ll show this is equivalent to our previous definition
example

suppose \(I = \text{ideal}\{f_1, f_2\} \) where

\[
f_1 = x^3 + 2x^2 - 5x + 2 \quad f_2 = x^2 + 3x - 4
\]

Is \(\{f_1, f_2\} \) a Groebner basis for \(I \)?

No, because we can construct \(p \in I \) whose leading term isn’t divisible by either of the \(\text{Lt}(f_i) \)

cancel \(x^3 \) terms: \(f_3 = xf_2 - f_1 = x^2 + x - 2 \) is in \(I \)

cancel \(x^2 \) terms: \(p = f_2 - f_3 = 2x - 2 \)
equivalence of Groebner basis conditions

suppose \(\{g_1, \ldots, g_m\} \subset I \) form a Groebner basis for \(I \), i.e.,

\[
\text{ideal}\{\text{lt}(I)\} = \text{ideal}\{\text{lt}(g_1), \ldots, \text{lt}(g_m)\}
\]

then

for all \(f \in I \) there is some \(i \) such that \(\text{lt}(g_i) \) divides \(\text{lt}(f) \)

because if \(f \in I \), then \(\text{lt}(f) \in \text{lt}(I) \) so by the assumption

\[
\text{lt}(f) \in \text{ideal}\{\text{lt}(g_1), \ldots, \text{lt}(g_m)\}
\]

the RHS is a monomial ideal, so membership implies \(\text{lt}(f) \) is a multiple of one of the \(\text{lt}(g_i) \)
equivalence of Groebner basis conditions

suppose \(\{g_1, \ldots, g_m\} \subset I \) and

for all \(f \in I \) there is some \(i \) such that \(\text{lt}(g_i) \) divides \(\text{lt}(f) \)

then \(\{g_1, \ldots, g_m\} \subset I \) form a Groebner basis for \(I \), i.e.,

\[
\text{ideal}\{\text{lt}(I)\} = \text{ideal}\{\text{lt}(g_1), \ldots, \text{lt}(g_m)\}
\]

let \(I_1 = \text{ideal}\{\text{lt}(I)\} \) and \(I_2 = \text{ideal}\{\text{lt}(g_1), \ldots, \text{lt}(g_m)\} \)

first, we’ll show \(I_1 \subset I_2 \)

to see this, suppose \(x^\gamma \in I_1 \) then \(x^\gamma = x^\alpha x^\beta \) for some \(x^\beta \in \text{lt}(I) \);
this means \(x^\beta = \text{lt}(f) \) for some \(f \in I \), so by the hypothesis it is divisible by some \(\text{lt}(g_i) \), hence so is \(x^\gamma \), so \(x^\gamma \in I_2 \)
equivalence of Groebner basis conditions

\[I_1 = \text{ideal}\{\text{lt}(I)\} \quad \text{and} \quad I_2 = \text{ideal}\{\text{lt}(g_1), \ldots, \text{lt}(g_m)\} \]

now we’ll show \(I_2 \subset I_1 \);

suppose \(x^\gamma \in I_2 \), then \(x^\gamma = x^\alpha \text{lt}(g_i) \) for some \(i \)

since \(g_i \in I \), we have \(\text{lt}(g_i) \in \text{lt}(I) \) and so \(x^\gamma \in I_1 \)
terminology

- the division algorithm for division of \(f \) by \(g_1, \ldots, g_m \) is also called \textit{reduction}.

- the remainder on division is called the \textit{normal form} of \(f \).
cancellation

suppose \(I = \text{ideal}\{g_1, \ldots, g_m\} \)

this set of polynomial is \textit{not} a Groebner basis for \(I \) if there is some \(f \in I \) such that

\[
\text{lt}(f) \not\in \text{ideal}\{\text{lt}(g_1), \ldots, \text{lt}(g_m)\}
\]

this can happen if the leading terms in a sum \(h_1g_1 + \cdots + h_mg_m \) cancel

example

in grlex order

\[
g_1 = x^3 - 2xy \quad g_2 = x^2y - 2y^2 + x
\]

we have \(-yg_1 + xg_2 = x^2\), so \(x^2 \in \text{ideal}\{g_1, \ldots, g_2\}\)

but \(\text{lt}(x^2) \not\in \text{ideal}\{\text{lt}(g_1), \ldots, \text{lt}(g_m)\}\)
least common multiple

the least common multiple of monomials x^α and x^β is x^{γ}, where

$$\gamma_i = \max\{\alpha_i, \beta_i\} \quad \text{for all } i = 1, \ldots, n$$

for example, the LCM of x^5yz^2 and x^2y^3z is $x^5y^3z^2$
syzygy polynomials

for \(f, g \in \mathbb{K}[x_1, \ldots, x_n] \), define the *syzygy polynomial* (*S*-polynomial)

\[
S(f, g) = \frac{x^\gamma}{\text{lt}(f)} f - \frac{x^\gamma}{\text{lt}(g)} g \quad \text{where} \quad x^\gamma = \text{lcm}(\text{lm}(f), \text{lm}(g))
\]

example

in grlex order

\[
f = x^3 y^2 - x^2 y^3 + x \quad g = 3x^4 y + y^2
\]

\(S(f, g) \) is designed to cancel the leading terms of \(f \) and \(g \)

\[
S(f, g) = xf - \frac{1}{3}yg = -x^3 y^3 - \frac{y^3}{3} + x^2
\]
cancellation and syzygy polynomials

suppose f_1, \ldots, f_m each have $\text{multideg}(f_i) = \delta$, and $c_1, \ldots, c_m \in \mathbb{K}$

if the sum $h = \sum_{i=1}^{m} c_i f_i$ has a cancellation, i.e.,

$$\text{multideg}(h) < \max_i \text{multideg}(f_i)$$

then h is a linear combination of S-polynomials

$$h = \sum_{j,k} c_{jk} S(f_k, f_k)$$

that is, the only way cancellation can occur is in S-polynomials

one can show this by rearranging the terms in h
example

given polynomials

\[
 f_1 = x^3 y^2 + x \quad f_2 = 2x^3 y^2 + y^2 \quad f_3 = x^3 y^2 - xy + x^2
\]

the linear combination has a cancellation

\[
 f_1 + f_3 - f_2 = x^2 - xy + x - y^2
\]

so it is a sum of \(S \)-polynomials \(s_{ij} = S(f_i, f_j) \)

\[
 = 2s_{12} - s_{13}
\]

since

\[
 s_{12} = x - \frac{y^2}{2} \quad s_{13} = -x^2 + xy + x \quad s_{23} = -x^2 + xy + \frac{y^2}{2}
\]
computation of Groebner bases

the polynomials g_1, \ldots, g_m are a Groebner basis if

the remainder of $S(g_i, g_j)$ on division by (g_1, \ldots, g_m) is zero for all i, j

- this gives a computational test to check if g_1, \ldots, g_m are a Groebner basis

- to prove this, we’ll show that if the above condition implies

 for all $f \in I$ there is some i such that $\text{Lt}(g_i)$ divides $\text{Lt}(f)$
proof

we can write any \(f \in I \) in terms of the generators

\[
f = \sum_i h_i g_i
\]

we need to prove that there is some \(i \) such that \(\text{lt}(g_i) \) divides \(\text{lt}(f) \); this holds if

\[
\text{multideg}(f) = \max_i \text{multideg}(h_i g_i)
\]

proof by contradiction; suppose it does not hold; i.e.,

\[
\text{multideg}(f) < \max_i \text{multideg}(h_i g_i)
\]

for all choices of \(h \) such that \(f = \sum h_i g_i \)
proof, continued

from all choices of \(h \) such that \(f = \sum h_i g_i \), let \(\delta \) be the minimum of the max multidegrees

\[
\delta = \min_h \max_i \text{multideg}(h_i g_i)
\]

and let \(h_1, \ldots, h_m \) achieve this, so we have

\[
f = \sum_i h_i g_i \quad \text{and} \quad \max_i \text{multideg}(h_i g_i) = \delta
\]

for proof by contradiction, assume \(\text{multideg}(f) < \delta \)

we’ll show that this contradicts the choice of \(\delta \) as minimal; i.e, we can find \(\tilde{h}_i \) such that

\[
f = \sum_i \tilde{h}_i g_i \quad \text{and} \quad \max_i \text{multideg}(\tilde{h}_i g_i) < \delta
\]
proof, continued

write f as a sum of terms in which cancellation occurs

$$f = \sum_i \text{lt}(h_i) g_i + \text{terms of lower multidegree}$$

each term in the sum has $\text{multideg}(\text{lt}(h_i) g_i) = \delta$, so from the previous result the sum is a linear combination of S-polynomials

$$f = \sum_{j,k} d_{jk} S(\text{lt}(h_j) g_j, \text{lt}(h_k) g_k) + \text{terms of lower multidegree}$$

each S-poly has $\text{multideg} < \delta$, and is a multiple of an S-poly of the g_i

$$S(\text{lt}(h_j) g_j, \text{lt}(h_k) g_k) = p_{jk} S(g_j, g_k)$$
proof, continued

by assumption, each \(S \)-poly of the \(g_i \) is divisible by the \(g_i \), so

\[
S(g_j, g_k) = \sum_i q_{ijk}g_i
\]

by the division algorithm, the terms satisfy

\[
\text{multideg}(q_{ijk}g_i) \leq \text{multideg} S(g_j, g_k)
\]

and since \(\text{multideg}(pq) \leq \text{multideg}(p) \text{multideg}(q) \)

\[
\text{multideg}(p_{jk}q_{ijk}g_i) \leq \text{multideg}
\left(S\left(\text{lt}(h_j)g_j, \text{lt}(h_k)g_k\right) \right)
< \delta
\]
proof, continued

now we have a basis expansion for \(f \)

\[
f = \sum_{i,j,k} d_{jk} p_{jk} q_{ijk} g_i + \text{terms of lower multidegree}
\]

\[
= \sum_{i} \tilde{h}_i g_i + \text{terms of lower multidegree}
\]

and each term has \(\text{multideg}(\tilde{h}_i q_i) < \delta \),

as required, this contradicts the assumption that \(\delta \) was minimal

this proves the result
the Buchberger algorithm

given \(f_1, \ldots, f_m \), the following algorithm constructs a Groebner basis for ideal \(\{f_1, \ldots, f_m\} \)

\[
G = \{f_1, \ldots, f_m\}
\]

repeat

for each pair \(f_i, f_j \in G \), divide \(S(f_i, f_j) \) by \(G \)

if any remainder \(r_{ij} \neq 0 \)

\[
G = G \cup \{r_{ij}\}
\]

until all remainders are zero
example

we’d like to find a Groebner basis for $I = \text{ideal}\{f_1, f_2\}$ using grlex order

\[f_1 = x^3 - 2xy \quad f_2 = x^2y - 2y^2 + x \]

we find $S(f_1, f_2) = -x^2$;
remainder on division of $S(f_1, f_2)$ by $\{f_1, f_2\}$ is $-x^2$; call this f_3

now we have $G = \{f_1, f_2, f_3\}$ we find $S(f_1, f_3) = -2xy$
remainder on division of $S(f_1, f_3)$ by G is $-2xy$; call this f_4
example, continued

now we have \(G = \{ f_1, f_2, f_3, f_4 \} \) we find \(S(f_1, f_4) = -2xy^2 \)
remainder on division of \(S(f_1, f_4) \) by \(G \) is 0; ignore it

we find \(S(f_2, f_3) = -2y^2 + x \)
remainder on division \(S(f_2, f_3) \) by \(G \) is \(-2y^2 + x\); call it \(f_5 \)

now we have \(G = \{ f_1, f_2, f_3, f_4, f_5 \} \)
we find the remainder on division of \(S(f_i, f_j) \) by \(G \) is zero for all \(i, j \)
algorithm terminates

\(G = \{ f_1, f_2, f_3, f_4, f_5 \} \) is a Groebner basis for \(I \)
notes on Buchberger algorithm

- at each step, the candidate basis grows
- the final basis may contain redundant polynomials; we’ll see how to remove these
- we still need to show that the algorithm always terminates; we’ll do this via the *ascending chain condition*
ascending chains

a sequence of ideals I_1, I_2, I_3, \ldots is called an ascending chain if

$$I_1 \subset I_2 \subset I_3$$

we say this chain stabilizes if for some N

$$I_N = I_{N+1} = I_{N+2} = \cdots$$
the ascending chain condition

every ascending chain of ideals in $\mathbb{K}[x_1, \ldots, x_n]$ stabilizes

this holds because, if we define

$$I = \bigcup_{i=1}^{\infty} I_i$$

then I is an ideal, so it is finitely generated, by say $\{f_1, \ldots, f_m\} \in I$

pick N sufficiently large that $\{f_1, \ldots, f_m\} \subset I_N$, then

$$I_k = I_N \quad \text{for all } k \geq N$$
termination of the Buchberger algorithm

the algorithm generates an ascending chain

\[\text{ideal}\{\text{lt}(G_1)\} \subset \text{ideal}\{\text{lt}(G_2)\} \subset \text{ideal}\{\text{lt}(G_3)\} \subset \cdots \]

which therefore stabilizes

remains to show that the set of basis functions stops growing

we’ll show that if \(G_k \neq G_{k+1}\) then \(\text{ideal}\{\text{lt}(G_k)\} \neq \text{ideal}\{\text{lt}(G_{k+1})\}\)

to see this, suppose \(r\) is the non-zero remainder of an \(S\)-poly, and

\[G_{k+1} = G_k \cup \{r\} \]

since \(r\) is a remainder on division, it is not divisible by any element of \(\text{lt}(G_k)\), so

\[\text{lt}(r) \not\in \text{ideal}\{\text{lt}(G_k)\} \]
minimal Groebner bases

suppose $G = \{g_1, \ldots, g_m\}$ is a Groebner basis;

we can remove polynomial g_i, leaving $G \setminus \{g_i\}$ a Groebner basis, if

$$\text{lt}(g_i) \text{ is divisible by } \text{lt}(g_j) \text{ for some } j \neq i$$

this holds because removing g_i does not change the monomial ideal

$$\text{ideal}\{\text{lt}(G)\}$$

a Groebner basis where all such redundant polynomials have been removed is called minimal
example

the following polynomials are a Groebner basis w.r.t. grlex order

\[f_1 = x^3 - 2xy \]
\[f_2 = x^2y - 2y^2 + x \]
\[f_3 = -x^2 \]
\[f_4 = -2xy \]
\[f_5 = -2y^2 + x \]

since \(\text{lt}(f_1) = -x \text{lt}(f_3) \), we can remove \(f_1 \)

since \(\text{lt}(f_2) = -\frac{1}{2}x \text{lt}(f_4) \), we can remove \(f_2 \)

so a minimal Groebner basis is \(\{ f_3, f_4, f_5 \} \)

it is not unique; e.g., we can replace \(f_3 \) by \(f_3 + cf_4 \) for any \(c \in \mathbb{K} \)
reduced Groebner bases

suppose $G = \{g_1, \ldots, g_m\}$ is a minimal Groebner basis; we can normalize each element as follows

\[
\text{replace } g_i \text{ by the remainder on dividing } g_i \text{ by } G \setminus \{g_i\}
\]

if each element is monic, and normalized as above, then G is called a reduced Groebner basis

for a given ideal and monomial ordering, it is unique

for the previous example, we have the reduced Groebner basis

\[
g_1 = x^2 \quad g_2 = xy \quad g_3 = y^2 - \frac{1}{2}x
\]
example: linear equations

consider the linear equations

\begin{align*}
3x - 6y - 2z &= 0 \\
2x - 4y + 4w &= 0 \\
x - 2y - z - w &= 0
\end{align*}

which is

\[
\begin{bmatrix}
3 & -6 & -2 & 0 \\
2 & -4 & 0 & 4 \\
1 & -2 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix} = 0
\]

the Buchberger algorithm gives the reduced Groebner basis

\[
\begin{bmatrix}
1 & -2 & 0 & -1 \\
0 & 0 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix} = 0
\]

i.e., it performs Gaussian elimination to \textit{reduced row echelon form}
properties of the Buchberger algorithm

- again, it’s linear algebra in disguise

- for polynomials in one variable, the Buchberger algorithm returns the gcd of f_1, \ldots, f_m

- for linear polynomials, the Buchberger algorithm performs Gaussian elimination

- many refinements of the algorithm are possible to achieve faster performance

- there is an important abstraction of these ideas

- we’ll see applications, and complexity analysis