EE464: Algebra and Duality

Example

$$
\begin{aligned}
\operatorname{minimize} & x_{1} x_{2} \\
\text { subject to } & x_{1} \geq 0 \\
& x_{2} \geq 0 \\
& x_{1}^{2}+x_{2}^{2} \leq 1
\end{aligned}
$$

- The objective is not convex.
- The Lagrange dual function is

$$
\begin{aligned}
g(\lambda) & =\inf _{x}\left(x_{1} x_{2}-\lambda_{1} x_{1}-\lambda_{2} x_{2}+\lambda_{3}\left(x_{1}^{2}+x_{2}^{2}-1\right)\right) \\
& =\left\{\begin{array}{l}
-\lambda_{3}-\frac{1}{2}\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]^{T}\left[\begin{array}{cc}
2 \lambda_{3} & 1 \\
1 & 2 \lambda_{3}
\end{array}\right]^{-1}\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right] \quad \text { if } \lambda_{3}>\frac{1}{2} \\
-\infty
\end{array}\right. \text { otherwise, except bdry }
\end{aligned}
$$

Example, continued

The dual problem is

$$
\begin{array}{cl}
\text { maximize } & g(\lambda) \\
\text { subject to } & \lambda_{1} \geq 0 \\
& \lambda_{2} \geq 0 \\
& \lambda_{3} \geq \frac{1}{2}
\end{array}
$$

- By symmetry, if the maximum $g(\lambda)$ is attained, then $\lambda_{1}=\lambda_{2}$ at optimality
- The optimal $g\left(\lambda^{\star}\right)=-\frac{1}{2}$ at $\lambda^{\star}=\left(0,0, \frac{1}{2}\right)$
- Here we see an example of a duality gap; the primal optimal is strictly greater than the dual optimal

Example, continued

It turns out that, using the Schur complement, the dual problem may be written as

$$
\begin{array}{cl}
\text { maximize } & \gamma \\
\text { subject to } & {\left[\begin{array}{ccc}
-2 \gamma-2 \lambda_{3} & \lambda_{1} & \lambda_{2} \\
\lambda_{1} & 2 \lambda_{3} & 1 \\
\lambda_{2} & 1 & 2 \lambda_{3}
\end{array}\right]>0} \\
& \lambda_{1}>0 \\
& \lambda_{2}>0
\end{array}
$$

We'll see a systematic way to convert a dual problem to an SDP, whenever the objective and constraint functions are polynomials.

The Dual is Not Intrinsic

- The dual problem, and its corresponding optimal value, are not properties of the primal feasible set and objective function alone.
- Instead, they depend on the particular equations and inequalities used

To construct equivalent primal optimization problems with different duals:

- replace the objective $f_{0}(x)$ by $h\left(f_{0}(x)\right)$ where h is increasing
- introduce new variables and associated constraints, e.g.

$$
\text { minimize } \quad\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}
$$

is replaced by

$$
\begin{aligned}
\operatorname{minimize} & \left(x_{1}-x_{2}\right)^{2}+\left(x_{4}-x_{3}\right)^{2} \\
\text { subject to } & x_{2}=x_{4}
\end{aligned}
$$

- add redundant constraints

Example

Adding the redundant constraint $x_{1} x_{2} \geq 0$ to the previous example gives

$$
\begin{aligned}
\operatorname{minimize} & x_{1} x_{2} \\
\text { subject to } & x_{1} \geq 0 \\
& x_{2} \geq 0 \\
& x_{1}^{2}+x_{2}^{2} \leq 1 \\
& x_{1} x_{2} \geq 0
\end{aligned}
$$

Clearly, this has the same primal feasible set and same optimal value as before

Example Continued

The Lagrange dual function is

$$
\begin{aligned}
g(\lambda) & =\inf _{x}\left(x_{1} x_{2}-\lambda_{1} x_{1}-\lambda_{2} x_{2}+\lambda_{3}\left(x_{1}^{2}+x_{2}^{2}-1\right)-\lambda_{4} x_{1} x_{2}\right) \\
& =\left\{\begin{array}{l}
-\lambda_{3}-\frac{1}{2}\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]^{T}\left[\begin{array}{cc}
2 \lambda_{3} & 1-\lambda_{4} \\
1-\lambda_{4} & 2 \lambda_{3}
\end{array}\right]^{-1}\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right] \quad \text { if } 2 \lambda_{3}>1-\lambda_{4} \\
-\infty
\end{array}\right. \text { otherwise, except bdry }
\end{aligned}
$$

- Again, this problem may also be written as an SDP. The optimal value is $g\left(\lambda^{\star}\right)=0$ at $\lambda^{\star}=(0,0,0,1)$
- Adding redundant constraints makes the dual bound tighter
- This always happens! Such redundant constraints are called valid inequalities.

Constructing Valid Inequalities

The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a valid inequality if

$$
f(x) \geq 0 \quad \text { for all feasible } x
$$

Given a set of inequality constraints, we can generate others as follows.
(i) If f_{1} and f_{2} define valid inequalities, then so does $h(x)=f_{1}(x)+f_{2}(x)$
(ii) If f_{1} and f_{2} define valid inequalities, then so does $h(x)=f_{1}(x) f_{2}(x)$
(iii) For any f, the function $h(x)=f(x)^{2}$ defines a valid inequality

Now we can use algebra to generate valid inequalities.

Valid Inequalities and Cones

- The set of polynomial functions on \mathbb{R}^{n} with real coefficients is denoted $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- Computationally, they are easy to parametrize. We will consider polynomial constraint functions.

A set of polynomials $P \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is called a cone if
(i) $f_{1} \in P$ and $f_{2} \in P$ implies $f_{1} f_{2} \in P$
(ii) $f_{1} \in P$ and $f_{2} \in P$ implies $f_{1}+f_{2} \in P$
(iii) $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ implies $f^{2} \in P$

It is called a proper cone if $-1 \notin P$
By applying the above rules to the inequality constraint functions, we can generate a cone of valid inequalities

Algebraic Geometry

- There is a correspondence between the geometric object (the feasible subset of \mathbb{R}^{n}) and the algebraic object (the cone of valid inequalities)
- This is a dual relationship; we'll see more of this later.
- The dual problem is constructed from the cone.
- For equality constraints, there is another algebraic object; the ideal generated by the equality constraints.
- For optimization, we need to look both at the geometric objects (for the primal) and the algebraic objects (for the dual problem)

Cones

- For $S \subset \mathbb{R}^{n}$, the cone defined by S is

$$
\mathcal{C}(S)=\left\{f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \mid f(x) \geq 0 \text { for all } x \in S\right\}
$$

- If P_{1} and P_{2} are cones, then so is $P_{1} \cap P_{2}$
- A polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is called a sum-of-squares (SOS) if

$$
f(x)=\sum_{i=1}^{r} s_{i}(x)^{2}
$$

for some polynomials s_{1}, \ldots, s_{r} and some $r \geq 0$. The set of SOS polynomials Σ is a cone.

- Every cone contains Σ.

Cones

The set monoid $\left\{f_{1}, \ldots, f_{m}\right\} \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is the set of all finite products of polynomials f_{i}, together with 1 .

The smallest cone containing the polynomials f_{1}, \ldots, f_{m} is

$$
\operatorname{cone}\left\{f_{1}, \ldots, f_{m}\right\}=\left\{\sum_{i=1}^{r} s_{i} g_{i} \mid s_{0}, \ldots, s_{r} \in \Sigma,\right.
$$

$$
\left.g_{i} \in \operatorname{monoid}\left\{f_{1}, \ldots, f_{m}\right\}\right\}
$$

cone $\left\{f_{1}, \ldots, f_{m}\right\}$ is called the cone generated by f_{1}, \ldots, f_{m}

Explicit Parametrization of the Cone

- If f_{1}, \ldots, f_{m} are valid inequalities, then so is every polynomial in cone $\left\{f_{1}, \ldots, f_{m}\right\}$
- The polynomial h is an element of cone $\left\{f_{1}, \ldots, f_{m}\right\}$ if and only if

$$
h(x)=s_{0}(x)+\sum_{i=1}^{m} s_{i}(x) f_{i}(x)+\sum_{i \neq j} r_{i j}(x) f_{i}(x) f_{j}(x)+\ldots
$$

where the s_{i} and $r_{i j}$ are sums-of-squares.

An Algebraic Approach to Duality

Suppose f_{1}, \ldots, f_{m} are polynomials, and consider the feasibility problem

$$
\begin{aligned}
& \text { does there exist } x \in \mathbb{R}^{n} \text { such that } \\
& f_{i}(x) \geq 0 \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

Every polynomial in cone $\left\{f_{1}, \ldots, f_{m}\right\}$ is non-negative on the feasible set.

So if there is a polynomial $q \in \operatorname{cone}\left\{f_{1}, \ldots, f_{m}\right\}$ which satisfies

$$
q(x) \leq-\varepsilon<0 \quad \text { for all } x \in \mathbb{R}^{n}
$$

then the primal problem is infeasible.

Example

Let's look at the feasibility version of the previous problem. Given $t \in \mathbb{R}$, does there exist $x \in \mathbb{R}^{2}$ such that

$$
\begin{aligned}
x_{1} x_{2} & \leq t \\
x_{1}^{2}+x_{2}^{2} & \leq 1 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Equivalently, is the set S nonempty, where

$$
S=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0 \text { for all } i=1, \ldots, m\right\}
$$

where

$$
\begin{array}{ll}
f_{1}(x)=t-x_{1} x_{2} & f_{2}(x)=1-x_{1}^{2}-x_{2}^{2} \\
f_{3}(x)=x_{1} & f_{4}(x)=x_{2}
\end{array}
$$

Example Continued

Let $q(x)=f_{1}(x)+\frac{1}{2} f_{2}(x)$. Then clearly $q \in \operatorname{cone}\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ and

$$
\begin{aligned}
q(x) & =t-x_{1} x_{2}+\frac{1}{2}\left(1-x_{1}^{2}-x_{2}^{2}\right) \\
& =t+\frac{1}{2}-\frac{1}{2}\left(x_{1}+x_{2}\right)^{2} \\
& \leq t+\frac{1}{2}
\end{aligned}
$$

So for any $t<-\frac{1}{2}$, the primal problem is infeasible. This corresponds to Lagrange multipliers $\left(1, \frac{1}{2}\right)$ for the thm. of alternatives.

Alternatively, this is a proof by contradiction.

- If there exists x such that $f_{i}(x) \geq 0$ for $i=1, \ldots, 4$ then we must also have $q(x) \geq 0$, since $q \in \operatorname{cone}\left\{f_{1}, \ldots, f_{4}\right\}$
- But we proved that q is negative if $t<-\frac{1}{2}$

Example Continued

We can also do better by using other functions in the cone. Try

$$
\begin{aligned}
q(x) & =f_{1}(x)+f_{3}(x) f_{4}(x) \\
& =t
\end{aligned}
$$

giving the stronger result that for any $t<0$ the inequalities are infeasible.
Again, this corresponds to Lagrange multipliers $(1,1)$

- In both of these examples, we found q in the cone which was globally negative. We can view q as the Lagrangian function evaluated at a particular value of λ
- The Lagrange multiplier procedure is searching over a particular subset of functions in the cone; those which are generated by linear combinations of the original constraints.
- By searching over more functions in the cone we can do better

Normalization

In the above example, we have

$$
q(x)=t+\frac{1}{2}-\frac{1}{2}\left(x_{1}+x_{2}\right)^{2}
$$

We can also show that $-1 \in \operatorname{cone}\left\{f_{1}, \ldots, f_{4}\right\}$, which gives a very simple proof of primal infeasibility.

Because, for $t<-\frac{1}{2}$, we have

$$
-1=a_{0} q(x)+a_{1}\left(x_{1}+x_{2}\right)^{2}
$$

and by construction q is in the cone, and $\left(x_{1}+x_{2}\right)^{2}$ is a sum of squares.
Here a_{0} and a_{1} are positive constants

$$
a_{0}=\frac{-2}{2 t+1} \quad a_{1}=\frac{-1}{2 t+1}
$$

An Algebraic Dual Problem

Suppose f_{1}, \ldots, f_{m} are polynomials. The primal feasibility problem is

$$
\begin{aligned}
& \text { does there exist } x \in \mathbb{R}^{n} \text { such that } \\
& f_{i}(x) \geq 0 \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

The dual feasibility problem is

$$
\text { Is it true that }-1 \in \operatorname{cone}\left\{f_{1}, \ldots, f_{m}\right\}
$$

If the dual problem is feasible, then the primal problem is infeasible.

In fact, a result called the Positivstellensatz implies that strong duality holds here.

Interpretation: Searching the Cone

- Lagrange duality is searching over linear combinations with nonnegative coefficients

$$
\lambda_{1} f_{1}+\cdots+\lambda_{m} f_{m}
$$

to find a globally negative function as a certificate

- The above algebraic procedure is searching over conic combinations

$$
s_{0}(x)+\sum_{i=1}^{m} s_{i}(x) f_{i}(x)+\sum_{i \neq j} r_{i j}(x) f_{i}(x) f_{j}(x)+\ldots
$$

where the s_{i} and $r_{i j}$ are sums-of-squares

Interpretation: Formal Proof

We can also view this as a type of formal proof:

- View f_{1}, \ldots, f_{m} are predicates, with $f_{i}(x) \geq 0$ meaning that x satisfies f_{i}.
- Then cone $\left\{f_{1}, \ldots, f_{m}\right\}$ consists of predicates which are logical consequences of f_{1}, \ldots, f_{m}.
- If we find -1 in the cone, then we have a proof by contradiction.

Our objective is to automatically search the cone for negative functions; i.e., proofs of infeasibility.

Example: Linear Inequalities

Does there exist $x \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
A x & \geq 0 \\
c^{T} x & \leq-1
\end{aligned}
$$

Write A in terms of its rows $A=\left[\begin{array}{c}a_{1}^{T} \\ \vdots \\ a_{m}^{T}\end{array}\right]$,
then we have inequality constraints defined by linear polynomials

$$
\begin{aligned}
f_{i}(x) & =a_{i}^{T} x & \text { for } i=1, \ldots, m \\
f_{m+1}(x) & =-1-c^{T} x &
\end{aligned}
$$

Example: Linear Inequalities

We'll search over functions $q \in \operatorname{cone}\left\{f_{1}, \ldots, f_{m+1}\right\}$ of the form

$$
q(x)=\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\mu f_{m+1}(x)
$$

Then the algebraic form of the dual is:

$$
\begin{aligned}
& \text { does there exist } \lambda_{i} \geq 0, \mu \geq 0 \text { such that } \\
& \qquad q(x)=-1 \quad \text { for all } x
\end{aligned}
$$

if the dual is feasible, then the primal problem is infeasible

Example: Linear Inequalities

The above dual condition is

$$
\lambda^{T} A x+\mu\left(-1-c^{T} x\right)=-1 \quad \text { for all } x
$$

which holds if and only if $A^{T} \lambda=\mu c$ and $\mu=1$.
So we can state the duality result as follows.
Farkas Lemma
If there exists $\lambda \in \mathbb{R}^{m}$ such that

$$
A^{T} \lambda=c \quad \text { and } \quad \lambda \geq 0
$$

then there does not exist $x \in \mathbb{R}^{n}$ such that

$$
A x \geq 0 \quad \text { and } \quad c^{T} x \leq-1
$$

Farkas Lemma

Farkas Lemma states that the following are strong alternatives
(i) there exists $\lambda \in \mathbb{R}^{m}$ such that $A^{T} \lambda=c$ and $\lambda \geq 0$
(ii) there exists $x \in \mathbb{R}^{n}$ such that $A x \geq 0$ and $c^{T} x<0$

Since this is just Lagrangian duality, there is a geometric interpretation
(i) c is in the convex cone

$$
\left\{A^{T} \lambda \mid \lambda \geq 0\right\}
$$

(ii) x defines the hyperplane

$$
\left\{y \in \mathbb{R}^{n} \mid y^{T} x=0\right\}
$$

which separates c from the cone

Optimization Problems

Let's return to optimization problems instead of feasibility problems.

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \geq 0 \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

The corresponding feasibility problem is

$$
\begin{aligned}
t-f_{0}(x) & \geq 0 \\
f_{i}(x) & \geq 0 \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

One simple dual is to find polynomials s_{i} and $r_{i j}$ such that

$$
t-f_{0}(x)+\sum_{i=1}^{m} s_{i}(x) f_{i}(x)+\sum_{i \neq j} r_{i j}(x) f_{i}(x) f_{j}(x)+\ldots
$$

is globally negative, where the s_{i} and $r_{i j}$ are sums-of-squares

Optimization Problems

We can combine this with a maximization over t

$$
\begin{array}{ll}
\text { maximize } & t \\
\text { subject to } & t-f_{0}(x)+ \\
& \sum_{i=1}^{m} s_{i}(x) f_{i}(x)+ \\
& s_{i}, r_{i j} \text { are sums-of-squares }
\end{array}
$$

- The variables here are (coefficients of) the polynomials s_{i}, r_{i}
- We will see later how to approach this kind of problem using semidefinite programming

