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algebraic geometry

One way to view linear algebra is as the study of equations of the form

a11T1 + a9 + -+ + A1y = Y1

A921T9 + A22T9 + * + + + A2, Ty, = Y2

Am1T2 + Qm2To + -+ + Gy = Ym

one may view algebraic geometry as the study of equations of the form

flz1, ... xy) =0

where the functions f; are polynomials
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feasibility problems

consider the feasibility problem

does there exist x € R" such that
filr) =0 foralli=1,...,m

sample problems
e is there a solution x € R", or x € C"
e find all solutions x; i.e., parametrize them

e among all solutions, find the one which minimizes a given cost function
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algebraic geometry and linear algebra

many ideas from linear algebra can be generalized

abstractions

duality, subspaces S, S+ ideals, varieties, quotient spaces

solving equations

Gaussian elimination Groebner basis algorithms

solving inequalities

LP duality real algebraic geometry, p-satz
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multivariable polynomials

a monomial in x1,...,x, is a product, written

B _ P15 Bn
x’ =xi'zy . T

where 8 = (f1, ..., ;) the degree of the monomial is 51 +

we'll also index the coefficients of polynomials by /3, as in

f= Zagxﬁ

peC

for example
f = Toirs + 220223 + 3r923

has C' — { (4,0,1),(2,0,2), (0,1,1) } and asp1 =7

.-+ 0, denoted |5
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multivariable polynomials

e the set of polynomials in n variables with real coefficients is denoted Rz, . .., x,],
also called the set of n—ary polynomials

e the degree of a polynomial is the maximum degree of its terms, with the convention
that deg(0) = —o0, so

deg(fg) = deg(f) + deg(g)

e we'll need to work over both R and C: we'll use K to denote either
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abstract spaces: groups

In a group, the operation (4 or X) is associative, invertible, and has an identity (0 or 1) ;

examples

e The rationals Q under addition
e The non-zero rationals Q\{0} under multiplication
e Every vector space under addition

e The invertible matrices under matrix multiplication
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abstract spaces: rings and fields

In a (commutative) ring R we have two operations

e addition: associativity, commutativity, identity, invertibility
e multiplication: associativity, commutativity, identity

e and distributivity f(g+h) = fg+ fh

If the nonzero elements of R form a group under multiplication then R is called a field

e The set of polynomials in n variables R[z, ..., x,]

e Zis aring;, Q, R and C are fields

e The set of functions f : S — R is a ring
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abstract spaces

e Every ring is a commutative group under addition

e The additive identity is 0, the multiplicative identity is 1

The ring of polynomials R|x1, ..., z,| contains R, so it is also a vector space (of infinite
dimension)
e.g. we can view R[z]| as the set of all sequences ( fy, f1, fo, ... ) where only finitely many

of the f; are nonzero

then multiplication is convolution

k
fg = (Co, Ci, .. > with Cr = Z fzgk:—z
1=0
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multivariable polynomials

e notice that R[zy, x5] = (Rlz1])[22], e.g.

T1ws + 4T w0 + 20105 + 3 = (27 + 221)75 + (427 )30 + 3

e we'll also use Ry|x1,...,x,] to denote the set of polynomials in n variables with
degree < d, i.e., the n—ary d—ics

n+d) ~ (n+d)!

e Rylx1,...,x,] has dimension ( =

n

o R(x1,...,x,) is the quotient field of rational functions
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algebraically closed fields

A field K is called algebraically closed if every polynomial in K|x| with degree > 1 has a
root.

The Fundamental Theorem of Algebra says that C is algebraically closed.
R is not (e.g. 2° + 1)

a nonzero polynomial in K[z| of degree m has at most m roots
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varieties

consider the feasibility problem

does there exist x € K" such that
filx)=0 foralli=1,....m

The variety defined by polynomials fi,..., fi, € Klzy,...,x,] is the corresponding
feasible set: i.e.,

V{fl,...,fm}:{xeK”|f7;($):()fora||i:1,...,m}

A variety is also called an algebraic set, or an affine variety.

Sometimes we'll use Vr{ f} to denote the real solutions
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examples of varieties

in general, a variety is any subset of K" which can be expressed as the common roots of
a set of polynomials

o If f(x)=a%+ 25— 1 then

V(f) is the unit circle in R?.

"1 205 0 05 1 15

e The affine set
{zeR"| Az =0}

is the variety of the polynomials a!z — b,
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varieties

example
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varieties may not be connected

for example
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examples of varieties

16

14

12

10

the graph of the rational function

is the variety

V(zy — 2° + 1)
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examples of varieties

example: V(2% — 2% — y?)
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examples of varieties

example: V(z? — y?2% + 2°)
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examples of varieties

the variety V(zz,yz) has two pieces of different dimension




20

examples of varieties

the set of matrices of rank < k£ is a variety

{AE(C"X”| rankAgk}

because rank(A) < k if and only if the determinant of all (k4 1) x (k4 1) submatrices
vanishes
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intersections and unions of varieties

e If V.V are varieties, thensois VNIV
because if V. =V{f1,..., fin} and W =V{qgy,...,g,} then
VW =V{fi,..., fm 91, 9n}

e sois V UW, because

VUW:V{figj|i:1,...,m,j:1,...,n}

proof: clearly VU W C V(f,g;)

to show VU W D V(fig;), suppose © € V(f;g;), and & V then, for some £,
fr(x) # 0, s0 fr(z)g;(z) =0 for all j
hence either x € V or x € W, as desired
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properties of varieties

Every variety in C" is closed.

because polynomials are continuous, the inverse image of a closed set is closed

not properties

e If V' is a variety, the projection of V' onto a subspace may not be a variety. e.g., the
projection onto y = 0 of V(x — 4?)

e The set-theoretic difference of two varieties may not be a variety.
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equality constraints

consider the feasibility problem

does there exist x € R" such that
filr) =0 foralli=1,...,m

the function f : R" — R is called a valid equality constraint if

f(x) =0 for all feasible

given a set of equality constraints, we can generate others as follows
(i) if f1 and fy are valid equalities, then so is f1 + f5
(ii) for any h € Rlxy,...,x,), if fis a valid equality, then so is A f

using these will make the dual bound tighter
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ideals and valid equality constraints

a set of polynomials I C R|zy,...,x,] is called an ideal if

() fi+foclforall fi,foel
(i) fhelforall felandh e Rlzy,...,x,)

e given f1,..., f,u, we can generate an ideal of valid equalities by repeatedly applying
these rules

e this gives the ideal generated by f1,..., fm,

ideal{f1,..., fm} = {thfz | hi € Ry, ..., 2 }
i=1

written ideal{ fi, ..., f,,}, or sometimes (f1,..., fi).
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generators of an ideal

e every polynomial in ideal{fi,..., f;,} is a valid equality.
e ideal{fi,..., fi,} is the smallest ideal containing f1,..., fu.

e the polynomials fi, ..., f,, are called the generators, or a basis, of the ideal.

properties of ideals
e if I and I5 are ideals, then so is I; N I

e an ideal generated by one polynomial is called a principal ideal
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example

f1:x1_373_1 f2:$2—$§—1

look at the polynomial
q=a7 — 21, — Tg+ 2

q € ideal{ f1, fo} because

q = hifi+ hafs
= (v +x3—1)fi +(=1)f

so every point x in the feasible set satisfies g(z) = 0

this is an example of using ideals for elimination of variables
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ideals

ideals will be a fundamental algebraic object in this course

e we can use polynomials in the ideal to strengthen the dual bound obtained via La-
grange duality

we'll see that the ideal is the appropriate dual object to the feasible set
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the ideal-variety correspondence

we'll see that ideals and varieties are in correspondence;

another way to say this is; the ideal captures all the information about the feasible set in
the polynomials

V(ideal{f,..., fu}) =V{fi,..., fn}
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example

apart from duality, ideals give us a very important tool for simplification of varieties; e.g.,
it's easy to see

ideal{22” + 3y* — 11,2 — 3* — 3} = ideal{2” — 4,9* — 1}

because if [ is an ideal, then if f1, fo € I then ideal{f;, fo} C I

so the variety is the four points

V{22° + 3y* — 11,2° — y* — 3} = {(£2,£1)}

in fact, one can do this automatically
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the ideal-variety correspondence

given a set S C R" , the set of polynomials which vanish on S is an ideal

I(S):{fER[xl,...,azn]\f(x):OforaIIa:ES}

Also given an ideal I C K[z, ..., x,] we can construct the variety
VI)={zeK"| f(x)=0forall feI}

Key question: are these maps one-to-one?
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the ideal-variety correspondence

If S is a variety, then

V(Z(S)) = S

This implies Z is one-to-one (since V is a left-inverse); i.e., no two distinct varieties give
the same ideal.

to see this,

o first we'll show S C V(Z(S))
suppose x € S; then f(z) =0 for all f € Z(S), so z € V(Z(9))

e now we'll show V(Z(S)) C S

suppose S = V{f1,..., fm}, and x € V(Z(S)). Then f(z) =0 for all f € Z(S).
Also we have f; € Z(.5), so fi(x) =0, and so x € S
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the ideal-variety correspondence

We'd like to consider the converse; do every two distinct ideals map to distinct varieties?
i.e. is ) one-to-one on the set of ideals?

The answer is no; for example
I, =ideal{(z — 1)(z —3)} I, =ideal{(z — 1)*(xz — 3)}
Both give variety V([;) = {1,3} C C.

But (33 — 1)(5[3 — 3) Q [2, SO ]1 # [2
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the ideal-variety correspondence

It turns out that that, except for multiplicities, ideals are uniquely defined by varieties. To
make this precise, define the radical of an ideal

\/jz{f\fTEIforsomeinteger’r21}

An ideal is called radical if I = /1.

One can show, using the Nullstellensatz (later), that for any
ideal I C Clxy,...,x,)

VI=Z(V(I))

This implies

There is a one-to-one correspondence between radical ideals and varieties




