EE464: Algebraic Geometric Dictionary

algebraic geometry

One way to view linear algebra is as the study of equations of the form

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=y_{1} \\
a_{21} x_{2}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=y_{2} \\
\vdots \\
a_{m 1} x_{2}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=y_{m}
\end{array}
$$

one may view algebraic geometry as the study of equations of the form

$$
\begin{array}{r}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
\end{array}
$$

where the functions f_{i} are polynomials

feasibility problems

consider the feasibility problem

$$
\begin{aligned}
& \text { does there exist } x \in \mathbb{R}^{n} \text { such that } \\
& f_{i}(x)=0 \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

sample problems

- is there a solution $x \in \mathbb{R}^{n}$, or $x \in \mathbb{C}^{n}$
- find all solutions x; i.e., parametrize them
- among all solutions, find the one which minimizes a given cost function

algebraic geometry and linear algebra

many ideas from linear algebra can be generalized
abstractions
duality, subspaces $S, S^{\perp} \quad$ ideals, varieties, quotient spaces
solving equations
Gaussian elimination
solving inequalities
LP duality
real algebraic geometry, p-satz

multivariable polynomials

a monomial in x_{1}, \ldots, x_{n} is a product, written

$$
x^{\beta}=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots x_{n}^{\beta_{n}}
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ the degree of the monomial is $\beta_{1}+\cdots+\beta_{n}$, denoted $|\beta|$
we'll also index the coefficients of polynomials by β, as in

$$
f=\sum_{\beta \in C} a_{\beta} x^{\beta}
$$

for example

$$
f=7 x_{1}^{4} x_{3}+2 x_{1}^{2} x_{3}^{2}+3 x_{2} x_{3}
$$

has $C=\{(4,0,1),(2,0,2),(0,1,1)\}$, and $a_{4,0,1}=7$

multivariable polynomials

- the set of polynomials in n variables with real coefficients is denoted $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, also called the set of n-ary polynomials
- the degree of a polynomial is the maximum degree of its terms, with the convention that $\operatorname{deg}(0)=-\infty$, so

$$
\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

- we'll need to work over both \mathbb{R} and \mathbb{C}; we'll use \mathbb{K} to denote either

abstract spaces: groups

In a group, the operation $(+$ or \times) is associative, invertible, and has an identity (0 or 1) ;
examples

- The rationals \mathbb{Q} under addition
- The non-zero rationals $\mathbb{Q} \backslash\{0\}$ under multiplication
- Every vector space under addition
- The invertible matrices under matrix multiplication
abstract spaces: rings and fields

In a (commutative) ring R we have two operations

- addition: associativity, commutativity, identity, invertibility
- multiplication: associativity, commutativity, identity
- and distributivity $f(g+h)=f g+f h$

If the nonzero elements of R form a group under multiplication then R is called a field

- The set of polynomials in n variables $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- \mathbb{Z} is a ring; \mathbb{Q}, \mathbb{R} and \mathbb{C} are fields
- The set of functions $f: S \rightarrow \mathbb{R}$ is a ring

abstract spaces

- Every ring is a commutative group under addition
- The additive identity is 0 , the multiplicative identity is 1

The ring of polynomials $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ contains \mathbb{R}, so it is also a vector space (of infinite dimension)
e.g. we can view $\mathbb{R}[x]$ as the set of all sequences $\left(f_{0}, f_{1}, f_{2}, \ldots\right)$ where only finitely many of the f_{i} are nonzero
then multiplication is convolution

$$
f g=\left(c_{0}, c_{1}, \ldots\right) \quad \text { with } \quad c_{k}=\sum_{i=0}^{k} f_{i} g_{k-i}
$$

multivariable polynomials

- notice that $\mathbb{R}\left[x_{1}, x_{2}\right]=\left(\mathbb{R}\left[x_{1}\right]\right)\left[x_{2}\right]$, e.g.

$$
x_{1}^{2} x_{2}^{2}+4 x_{1}^{3} x_{2}+2 x_{1} x_{2}^{2}+3=\left(x_{1}^{2}+2 x_{1}\right) x_{2}^{2}+\left(4 x_{1}^{3}\right) x_{2}+3
$$

- we'll also use $\mathbb{R}_{d}\left[x_{1}, \ldots, x_{n}\right]$ to denote the set of polynomials in n variables with degree $\leq d$, i.e., the n-ary d-ics
- $\mathbb{R}_{d}\left[x_{1}, \ldots, x_{n}\right]$ has dimension $\binom{n+d}{n}=\frac{(n+d)!}{n!d!}$
- $\mathbb{R}\left(x_{1}, \ldots, x_{n}\right)$ is the quotient field of rational functions

algebraically closed fields

A field \mathbb{K} is called algebraically closed if every polynomial in $\mathbb{K}[x]$ with degree ≥ 1 has a root.

The Fundamental Theorem of Algebra says that \mathbb{C} is algebraically closed.
\mathbb{R} is not (e.g. $x^{2}+1$)
a nonzero polynomial in $\mathbb{K}[x]$ of degree m has at most m roots

varieties

consider the feasibility problem

$$
\begin{aligned}
& \text { does there exist } x \in \mathbb{K}^{n} \text { such that } \\
& f_{i}(x)=0 \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

The variety defined by polynomials $f_{1}, \ldots, f_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ is the corresponding feasible set; i.e.,

$$
\mathcal{V}\left\{f_{1}, \ldots, f_{m}\right\}=\left\{x \in \mathbb{K}^{n} \mid f_{i}(x)=0 \text { for all } i=1, \ldots, m\right\}
$$

A variety is also called an algebraic set, or an affine variety. Sometimes we'll use $\mathcal{V}_{\mathbb{R}}\{f\}$ to denote the real solutions

examples of varieties

in general, a variety is any subset of \mathbb{K}^{n} which can be expressed as the common roots of a set of polynomials

- If $f(x)=x_{1}^{2}+x_{2}^{2}-1$ then
$\mathcal{V}(f)$ is the unit circle in \mathbb{R}^{2}.

- The affine set

$$
\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}
$$

is the variety of the polynomials $a_{i}^{T} x-b_{i}$

varieties

example

$$
\mathcal{V}\left(z-x^{2}-y^{2}\right)
$$

varieties may not be connected
for example

$$
\mathcal{V}\left(x+y^{2}-x^{3}\right)
$$

examples of varieties

the graph of the rational function

$$
y=\frac{x^{3}-1}{x}
$$

is the variety

$$
\mathcal{V}\left(x y-x^{3}+1\right)
$$

examples of varieties

example: $\mathcal{V}\left(z^{2}-x^{2}-y^{2}\right)$

examples of varieties

example: $\mathcal{V}\left(x^{2}-y^{2} z^{2}+z^{3}\right)$

examples of varieties

the variety $\mathcal{V}(x z, y z)$ has two pieces of different dimension

examples of varieties

the set of matrices of rank $\leq k$ is a variety

$$
\left\{A \in \mathbb{C}^{n \times n} \mid \operatorname{rank} A \leq k\right\}
$$

because $\operatorname{rank}(A) \leq k$ if and only if the determinant of all $(k+1) \times(k+1)$ submatrices vanishes

intersections and unions of varieties

- If V, W are varieties, then so is $V \cap W$ because if $V=\mathcal{V}\left\{f_{1}, \ldots, f_{m}\right\}$ and $W=\mathcal{V}\left\{g_{1}, \ldots, g_{n}\right\}$ then

$$
V \cap W=\mathcal{V}\left\{f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{n}\right\}
$$

- so is $V \cup W$, because

$$
V \cup W=\mathcal{V}\left\{f_{i} g_{j} \mid i=1, \ldots, m, j=1, \ldots, n\right\}
$$

proof: clearly $V \cup W \subset \mathcal{V}\left(f_{i} g_{j}\right)$
to show $V \cup W \supset \mathcal{V}\left(f_{i} g_{j}\right)$, suppose $x \in \mathcal{V}\left(f_{i} g_{j}\right)$, and $x \notin V$ then, for some k, $f_{k}(x) \neq 0$, so $f_{k}(x) g_{j}(x)=0$ for all j
hence either $x \in V$ or $x \in W$, as desired

properties of varieties

Every variety in \mathbb{C}^{n} is closed.
because polynomials are continuous, the inverse image of a closed set is closed

not properties

- If V is a variety, the projection of V onto a subspace may not be a variety. e.g., the projection onto $y=0$ of $\mathcal{V}\left(x-y^{2}\right)$
- The set-theoretic difference of two varieties may not be a variety.

equality constraints

consider the feasibility problem

$$
\begin{aligned}
& \text { does there exist } x \in \mathbb{R}^{n} \text { such that } \\
& f_{i}(x)=0 \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a valid equality constraint if

$$
f(x)=0 \quad \text { for all feasible } x
$$

given a set of equality constraints, we can generate others as follows
(i) if f_{1} and f_{2} are valid equalities, then so is $f_{1}+f_{2}$
(ii) for any $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, if f is a valid equality, then so is $h f$ using these will make the dual bound tighter

ideals and valid equality constraints

a set of polynomials $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is called an ideal if
(i) $f_{1}+f_{2} \in I$ for all $f_{1}, f_{2} \in I$
(ii) $f h \in I$ for all $f \in I$ and $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

- given f_{1}, \ldots, f_{m}, we can generate an ideal of valid equalities by repeatedly applying these rules
- this gives the ideal generated by f_{1}, \ldots, f_{m},

$$
\text { ideal }\left\{f_{1}, \ldots, f_{m}\right\}=\left\{\sum_{i=1}^{m} h_{i} f_{i} \mid h_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

written ideal $\left\{f_{1}, \ldots, f_{m}\right\}$, or sometimes $\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

generators of an ideal

- every polynomial in ideal $\left\{f_{1}, \ldots, f_{m}\right\}$ is a valid equality.
- ideal $\left\{f_{1}, \ldots, f_{m}\right\}$ is the smallest ideal containing f_{1}, \ldots, f_{m}.
- the polynomials f_{1}, \ldots, f_{m} are called the generators, or a basis, of the ideal.
properties of ideals
- if I_{1} and I_{2} are ideals, then so is $I_{1} \cap I_{2}$
- an ideal generated by one polynomial is called a principal ideal

example

$$
f_{1}=x_{1}-x_{3}-1 \quad f_{2}=x_{2}-x_{3}^{2}-1
$$

look at the polynomial

$$
q=x_{1}^{2}-2 x_{1}-x_{2}+2
$$

$q \in \operatorname{ideal}\left\{f_{1}, f_{2}\right\}$ because

$$
\begin{aligned}
q & =h_{1} f_{1}+h_{2} f_{2} \\
& =\left(x_{1}+x_{3}-1\right) f_{1}+(-1) f_{2}
\end{aligned}
$$

so every point x in the feasible set satisfies $q(x)=0$
this is an example of using ideals for elimination of variables

ideals

ideals will be a fundamental algebraic object in this course

- we can use polynomials in the ideal to strengthen the dual bound obtained via Lagrange duality
we'll see that the ideal is the appropriate dual object to the feasible set

the ideal-variety correspondence

we'll see that ideals and varieties are in correspondence;
another way to say this is; the ideal captures all the information about the feasible set in the polynomials

$$
\mathcal{V}\left(\operatorname{ideal}\left\{f_{1}, \ldots, f_{m}\right\}\right)=\mathcal{V}\left\{f_{1}, \ldots, f_{m}\right\}
$$

example

apart from duality, ideals give us a very important tool for simplification of varieties; e.g., it's easy to see

$$
\text { ideal }\left\{2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right\}=\operatorname{ideal}\left\{x^{2}-4, y^{2}-1\right\}
$$

because if I is an ideal, then if $f_{1}, f_{2} \in I$ then ideal $\left\{f_{1}, f_{2}\right\} \subset I$
so the variety is the four points

$$
\mathcal{V}\left\{2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right\}=\{(\pm 2, \pm 1)\}
$$

in fact, one can do this automatically

the ideal-variety correspondence

given a set $S \subset \mathbb{R}^{n}$, the set of polynomials which vanish on S is an ideal

$$
\mathcal{I}(S)=\left\{f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \mid f(x)=0 \text { for all } x \in S\right\}
$$

Also given an ideal $I \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ we can construct the variety

$$
\mathcal{V}(I)=\left\{x \in \mathbb{K}^{n} \mid f(x)=0 \text { for all } f \in I\right\}
$$

Key question: are these maps one-to-one?

the ideal-variety correspondence

If S is a variety, then

$$
\mathcal{V}(\mathcal{I}(S))=S
$$

This implies \mathcal{I} is one-to-one (since \mathcal{V} is a left-inverse); i.e., no two distinct varieties give the same ideal.
to see this,

- first we'll show $S \subset \mathcal{V}(\mathcal{I}(S))$
suppose $x \in S$; then $f(x)=0$ for all $f \in \mathcal{I}(S)$, so $x \in \mathcal{V}(\mathcal{I}(S))$
- now we'll show $\mathcal{V}(\mathcal{I}(S)) \subset S$
suppose $S=\mathcal{V}\left\{f_{1}, \ldots, f_{m}\right\}$, and $x \in \mathcal{V}(\mathcal{I}(S))$. Then $f(x)=0$ for all $f \in \mathcal{I}(S)$. Also we have $f_{i} \in \mathcal{I}(S)$, so $f_{i}(x)=0$, and so $x \in S$

the ideal-variety correspondence

We'd like to consider the converse; do every two distinct ideals map to distinct varieties? i.e. is \mathcal{V} one-to-one on the set of ideals?

The answer is no; for example

$$
I_{1}=\operatorname{ideal}\{(x-1)(x-3)\} \quad I_{2}=\operatorname{ideal}\left\{(x-1)^{2}(x-3)\right\}
$$

Both give variety $\mathcal{V}\left(I_{i}\right)=\{1,3\} \subset \mathbb{C}$.
But $(x-1)(x-3) \notin I_{2}$, so $I_{1} \neq I_{2}$

the ideal-variety correspondence

It turns out that that, except for multiplicities, ideals are uniquely defined by varieties.To make this precise, define the radical of an ideal

$$
\sqrt{I}=\left\{f \mid f^{r} \in I \text { for some integer } r \geq 1\right\}
$$

An ideal is called radical if $I=\sqrt{I}$.
One can show, using the Nullstellensatz (later), that for any ideal $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

$$
\sqrt{I}=\mathcal{I}(\mathcal{V}(I))
$$

This implies
There is a one-to-one correspondence between radical ideals and varieties

