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algebraic geometry

One way to view linear algebra is as the study of equations of the form

a11x1 + a12x2 + · · · + a1nxn = y1

a21x2 + a22x2 + · · · + a2nxn = y2
...

am1x2 + am2x2 + · · · + amnxn = ym

one may view algebraic geometry as the study of equations of the form

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0

where the functions fi are polynomials
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feasibility problems

consider the feasibility problem

does there exist x ∈ Rn such that

fi(x) = 0 for all i = 1, . . . ,m

sample problems

• is there a solution x ∈ Rn, or x ∈ Cn

• find all solutions x; i.e., parametrize them

• among all solutions, find the one which minimizes a given cost function
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algebraic geometry and linear algebra

many ideas from linear algebra can be generalized

abstractions

duality, subspaces S, S⊥ ideals, varieties, quotient spaces

solving equations

Gaussian elimination Groebner basis algorithms

solving inequalities

LP duality real algebraic geometry, p-satz
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multivariable polynomials

a monomial in x1, . . . , xn is a product, written

xβ = xβ11 x
β2
2 . . . x

βn
n

where β = (β1, . . . , βn) the degree of the monomial is β1 + · · · + βn, denoted |β|

we’ll also index the coefficients of polynomials by β, as in

f =
∑
β∈C

aβx
β

for example
f = 7x41x3 + 2x21x

2
3 + 3x2x3

has C =
{
(4, 0, 1), (2, 0, 2), (0, 1, 1)

}
, and a4,0,1 = 7
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multivariable polynomials

• the set of polynomials in n variables with real coefficients is denoted R[x1, . . . , xn],
also called the set of n−ary polynomials

• the degree of a polynomial is the maximum degree of its terms, with the convention
that deg(0) = −∞, so

deg(fg) = deg(f ) + deg(g)

• we’ll need to work over both R and C; we’ll use K to denote either
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abstract spaces: groups

In a group, the operation (+ or ×) is associative, invertible, and has an identity (0 or 1) ;

examples

• The rationals Q under addition

• The non-zero rationals Q\{0} under multiplication

• Every vector space under addition

• The invertible matrices under matrix multiplication
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abstract spaces: rings and fields

In a (commutative) ring R we have two operations

• addition: associativity, commutativity, identity, invertibility

• multiplication: associativity, commutativity, identity

• and distributivity f (g + h) = fg + fh

If the nonzero elements of R form a group under multiplication then R is called a field

• The set of polynomials in n variables R[x1, . . . , xn]

• Z is a ring; Q, R and C are fields

• The set of functions f : S → R is a ring
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abstract spaces

• Every ring is a commutative group under addition

• The additive identity is 0, the multiplicative identity is 1

The ring of polynomials R[x1, . . . , xn] contains R, so it is also a vector space (of infinite
dimension)

e.g. we can view R[x] as the set of all sequences (f0, f1, f2, . . . ) where only finitely many
of the fi are nonzero

then multiplication is convolution

fg = (c0, c1, . . . ) with ck =

k∑
i=0

figk−i
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multivariable polynomials

• notice that R[x1, x2] = (R[x1])[x2], e.g.

x21x
2
2 + 4x31x2 + 2x1x

2
2 + 3 = (x21 + 2x1)x

2
2 + (4x31)x2 + 3

• we’ll also use Rd[x1, . . . , xn] to denote the set of polynomials in n variables with
degree ≤ d, i.e., the n−ary d−ics

• Rd[x1, . . . , xn] has dimension

(
n + d

n

)
=

(n + d)!

n!d!

• R(x1, . . . , xn) is the quotient field of rational functions
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algebraically closed fields

A field K is called algebraically closed if every polynomial in K[x] with degree ≥ 1 has a
root.

The Fundamental Theorem of Algebra says that C is algebraically closed.

R is not (e.g. x2 + 1)

a nonzero polynomial in K[x] of degree m has at most m roots
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varieties

consider the feasibility problem

does there exist x ∈ Kn such that

fi(x) = 0 for all i = 1, . . . ,m

The variety defined by polynomials f1, . . . , fm ∈ K[x1, . . . , xm] is the corresponding
feasible set; i.e.,

V{f1, . . . , fm} =
{
x ∈ Kn | fi(x) = 0 for all i = 1, . . . ,m

}

A variety is also called an algebraic set, or an affine variety.

Sometimes we’ll use VR{f} to denote the real solutions
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examples of varieties

in general, a variety is any subset of Kn which can be expressed as the common roots of
a set of polynomials

• If f (x) = x21 + x22 − 1 then

V(f ) is the unit circle in R2.

• The affine set {
x ∈ Rn | Ax = b

}
is the variety of the polynomials aTi x− bi
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varieties

example
V(z − x2 − y2)
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varieties may not be connected

for example
V(x + y2 − x3)
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examples of varieties

the graph of the rational function

y =
x3 − 1

x

is the variety

V(xy − x3 + 1)
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examples of varieties

example: V(z2 − x2 − y2)
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examples of varieties

example: V(x2 − y2z2 + z3)
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examples of varieties

the variety V(xz, yz) has two pieces of different dimension
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examples of varieties

the set of matrices of rank ≤ k is a variety{
A ∈ Cn×n | rankA ≤ k

}

because rank(A) ≤ k if and only if the determinant of all (k + 1)× (k + 1) submatrices
vanishes
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intersections and unions of varieties

• If V,W are varieties, then so is V ∩W

because if V = V{f1, . . . , fm} and W = V{g1, . . . , gn} then

V ∩W = V{f1, . . . , fm, g1, . . . , gn}

• so is V ∪W , because

V ∪W = V
{
figj | i = 1, . . . ,m, j = 1, . . . , n

}

proof: clearly V ∪W ⊂ V(figj)
to show V ∪W ⊃ V(figj), suppose x ∈ V(figj), and x 6∈ V then, for some k,
fk(x) 6= 0, so fk(x)gj(x) = 0 for all j

hence either x ∈ V or x ∈ W , as desired
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properties of varieties

Every variety in Cn is closed.

because polynomials are continuous, the inverse image of a closed set is closed

not properties

• If V is a variety, the projection of V onto a subspace may not be a variety. e.g., the
projection onto y = 0 of V(x− y2)

• The set-theoretic difference of two varieties may not be a variety.
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equality constraints

consider the feasibility problem

does there exist x ∈ Rn such that

fi(x) = 0 for all i = 1, . . . ,m

the function f : Rn → R is called a valid equality constraint if

f (x) = 0 for all feasible x

given a set of equality constraints, we can generate others as follows

(i) if f1 and f2 are valid equalities, then so is f1 + f2

(ii) for any h ∈ R[x1, . . . , xn], if f is a valid equality, then so is hf

using these will make the dual bound tighter
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ideals and valid equality constraints

a set of polynomials I ⊂ R[x1, . . . , xn] is called an ideal if

(i) f1 + f2 ∈ I for all f1, f2 ∈ I

(ii) fh ∈ I for all f ∈ I and h ∈ R[x1, . . . , xn]

• given f1, . . . , fm, we can generate an ideal of valid equalities by repeatedly applying
these rules

• this gives the ideal generated by f1, . . . , fm,

ideal{f1, . . . , fm} =

{
m∑
i=1

hifi | hi ∈ R[x1, . . . , xn]

}

written ideal{f1, . . . , fm}, or sometimes 〈f1, . . . , fm〉.
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generators of an ideal

• every polynomial in ideal{f1, . . . , fm} is a valid equality.

• ideal{f1, . . . , fm} is the smallest ideal containing f1, . . . , fm.

• the polynomials f1, . . . , fm are called the generators, or a basis, of the ideal.

properties of ideals

• if I1 and I2 are ideals, then so is I1 ∩ I2

• an ideal generated by one polynomial is called a principal ideal
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example

f1 = x1 − x3 − 1 f2 = x2 − x23 − 1

look at the polynomial
q = x21 − 2x1 − x2 + 2

q ∈ ideal{f1, f2} because

q = h1f1 + h2f2

= (x1 + x3 − 1)f1 + (−1)f2

so every point x in the feasible set satisfies q(x) = 0

this is an example of using ideals for elimination of variables
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ideals

ideals will be a fundamental algebraic object in this course

• we can use polynomials in the ideal to strengthen the dual bound obtained via La-
grange duality

we’ll see that the ideal is the appropriate dual object to the feasible set
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the ideal-variety correspondence

we’ll see that ideals and varieties are in correspondence;

another way to say this is; the ideal captures all the information about the feasible set in
the polynomials

V(ideal{f1, . . . , fm}) = V{f1, . . . , fm}
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example

apart from duality, ideals give us a very important tool for simplification of varieties; e.g.,
it’s easy to see

ideal{2x2 + 3y2 − 11, x2 − y2 − 3} = ideal{x2 − 4, y2 − 1}

because if I is an ideal, then if f1, f2 ∈ I then ideal{f1, f2} ⊂ I

so the variety is the four points

V{2x2 + 3y2 − 11, x2 − y2 − 3} = {(±2,±1)}

in fact, one can do this automatically
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the ideal-variety correspondence

given a set S ⊂ Rn , the set of polynomials which vanish on S is an ideal

I(S) =
{
f ∈ R[x1, . . . , xn] | f (x) = 0 for all x ∈ S

}

Also given an ideal I ⊂ K[x1, . . . , xn] we can construct the variety

V(I) =
{
x ∈ Kn | f (x) = 0 for all f ∈ I

}
Key question: are these maps one-to-one?
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the ideal-variety correspondence

If S is a variety, then

V
(
I(S)

)
= S

This implies I is one-to-one (since V is a left-inverse); i.e., no two distinct varieties give
the same ideal.

to see this,

• first we’ll show S ⊂ V
(
I(S)

)
suppose x ∈ S; then f (x) = 0 for all f ∈ I(S), so x ∈ V

(
I(S)

)
• now we’ll show V

(
I(S)

)
⊂ S

suppose S = V{f1, . . . , fm}, and x ∈ V
(
I(S)

)
. Then f (x) = 0 for all f ∈ I(S).

Also we have fi ∈ I(S), so fi(x) = 0, and so x ∈ S
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the ideal-variety correspondence

We’d like to consider the converse; do every two distinct ideals map to distinct varieties?
i.e. is V one-to-one on the set of ideals?

The answer is no; for example

I1 = ideal{(x− 1)(x− 3)} I2 = ideal{(x− 1)2(x− 3)}

Both give variety V(Ii) = {1, 3} ⊂ C.

But (x− 1)(x− 3) 6∈ I2, so I1 6= I2
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the ideal-variety correspondence

It turns out that that, except for multiplicities, ideals are uniquely defined by varieties.To
make this precise, define the radical of an ideal

√
I =

{
f | f r ∈ I for some integer r ≥ 1

}
An ideal is called radical if I =

√
I .

One can show, using the Nullstellensatz (later), that for any
ideal I ⊂ C[x1, . . . , xn] √

I = I
(
V(I)

)
This implies

There is a one-to-one correspondence between radical ideals and varieties


