EE464: Convexity Review

Linear programming

Semidefinite programming

Linear programming

Linear programming

a linear program in *standard primal form*

minimize
$$c^{\mathsf{T}}x$$

subject to $Ax = b$
 $x \ge 0$

- many other forms, *e.g.*, using slack variables or splitting variables
- feasible set is intersection of affine subspace with nonnegative orthant
- intersection of two convex sets, hence convex
- a *polyhedron* is the intersection of finitely many closed halfspaces
- a bounded polyhedron is called a *polytope*

Dual LP

4

- again, optimizing a linear function over a polyhedron
- several direct relationships to the primal problem

Complexity of LP

- $A \in \mathbb{R}^{m \times n}$
- *L* is bit-length of the input
- Klee and Minty (1972) example; simplex algorithm takes 2^n steps
- Khachiyan (1979) gave (impractical) ellipsoid algorithm taking $O(n^6L^2)$
- *i.e.*, polynomial in the Turing model, called *weakly polynomial time*
- Karmarkar (1984) gave practical interior-point method, also weakly polynomial
- unknown if there is a strongly polynomial algorithm, *i.e.*, one polynomial in n, m

Example: Linear program

minimize	$x_1 + x_2$
subject to	$3x_1 + x_2 \ge 3$
	$x_2 \ge 1$
	$x_1 \le 4$
	$-x_1 + 5x_2 \le 20$
	$x_1 + 4x_2 \le 20$

Properties of linear programs

- *feasible set is a polyhedron*, hence has finitely many extreme points and extreme rays
- every polyhedron P has the form

$$P = \mathbf{conv}(u_1, \ldots, u_r) + \mathbf{cone}(v_1, \ldots, v_s)$$

where u_1, \ldots, u_r are the vertices and v_1, \ldots, v_r are the extreme rays

- the vertices provide an alternative representation of a polytope
- the representation of the feasible set can affect the practical computational cost of solving a linear program

Properties of linear programs

- if optimal value is achieved, then it is *achieved at an extreme point*
- for a polyhedron, extreme points are *rational* functions of A, b, c

Properties of linear programs

• weak duality: if x, y are both feasible points, then

 $c^{\mathsf{T}}x - b^{\mathsf{T}}y \ge 0$ because $c^{\mathsf{T}}x - b^{\mathsf{T}}y = x^{\mathsf{T}}(c - A^{\mathsf{T}}y) \ge 0$

- *strong duality:* the primal is feasible iff the dual is feasible. If feasible, they have the same optimal value
- complementary slackness: if x, y feasible, then they are optimal iff

$$x_i(c - A^\mathsf{T}y)_i = 0$$
 for all i

(follows from strong duality and above inequality)

Semidefinite programming

Positive definite matrices

- \mathbb{S}^n , \mathbb{S}^n_+ , and \mathbb{S}^n_{++} denote the sets of $n \times n$ symmetric, positive semidefinite, and positive definite matrices
- $S \subset \mathbb{R}^m$ is called a *spectrahedron* if it has the form

$$S = \left\{ x \in \mathbb{R}^m \, | \, A_0 + \sum_{i=1}^m A_i x_i \succeq 0 \right\}$$

where A_0, \ldots, A_m are symmetric matrices

- above inequality is called a *linear matrix inequality*
- a spectrahedron is closed and convex, since it is the intersection of an affine subspace and the positive semidefinite cone

Positive definite matrices

• some authors define a spectrahedron as a set of matrices

$$\left\{A_0 + \sum_{i=1}^m A_i x_i \,|\, x \in S\right\}$$

this set is affinely equivalent to S if the A_i are linearly independent

• $S \subset \mathbb{R}^m$ is called a *projected spectrahedron* if it has the form

$$S = \left\{ x \in \mathbb{R}^{m} \, | \, \exists y \, A_{0} + \sum_{i=1}^{m} A_{i} x_{i} + \sum_{i=1}^{p} B_{i} y_{i} \succeq 0 \right\}$$

where $A_0, \ldots, A_m, B_1, \ldots, B_p$ are symmetric matrices

Example: Spectrahedron

notice that the determinant $3 + x - 3x^2 - x^3 - 2y^2$ vanishes on the boundary

Example: Projected spectrahedron

$$\left\{ (x,y) \in \mathbb{R}^2 \, | \, \exists z \in \mathbb{R}, \, \begin{bmatrix} z+y & 2z-x \\ 2z-x & z-y \end{bmatrix} \ge 0, \, 0 \le z \le 1 \right\}$$

this set is the convex hull of $(x-2)^2+y^2\leq 1$ and the origin it is not a spectrahedron

Semidefinite programming

minimize
$$\langle C, X \rangle$$

subject to $\langle A_i, X \rangle = b_i$ for all $i = 1, \dots, m$
 $X \succeq 0$

- variables are $X \in \mathbb{S}^n$
- $C, A_i \in \mathbb{S}^n$ and $b \in \mathbb{R}^m$
- formally similar to LP
- convex, since spectrahedron is convex

Example: Semidefinite programming

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \qquad A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad b_1 = 1$$

• feasible set is not polyhedral

• optimal is not rational:
$$X = \frac{1}{4} \begin{bmatrix} 2 - \sqrt{2} & -\sqrt{2} \\ -\sqrt{2} & 2 + \sqrt{2} \end{bmatrix}$$

Semidefinite programming

there may not exist an optimal solution

minimize
$$t$$

subject to $\begin{bmatrix} x & 1 \\ 1 & t \end{bmatrix} \succeq 0$

Dual SDP

• weak duality; if X, y are feasible, then $\langle C, X \rangle - b^{\mathsf{T}} y \ge 0$

Strong duality

define the dual value

$$d^{\star} = \sup \left\{ b^{\mathsf{T}} y \mid \sum_{i=1}^{m} A_{i} y_{i} \preceq C \right\}$$

Strong duality

if the dual is strictly feasible, *i.e.*, there exists y such that

$$\sum_{i=1}^{m} A_i y_i \prec C$$

and the dual problem is bounded, *i.e.*, d^{\star} is finite, then

• primal feasibility: there exists $X \succeq 0$ such that

$$\langle A_i, X \rangle = b_i$$
 for all $i = 1, \dots, m$

• **optimality**: that X is optimal

$$\langle C, X \rangle = d^{\star}$$

Semialgebraic sets

the feasible set of an SDP has the form

$$\left\{ x \in \mathbb{R}^n \mid f_i(x) \ge 0 \text{ for all } i = 1, \dots, m \right\}$$

- f_1, \ldots, f_m is are polynomials
- called a *basic closed semialgebraic set* defined by
- because a matrix $A \succ 0$ if and only if

 $det(A_k) > 0$ for k = 1, ..., n

where A_k is the submatrix of A consisting of the first k rows and columns

Example: semialgebraic set

$$0 \prec \begin{bmatrix} 3 - x_1 & -(x_1 + x_2) & 1\\ -(x_1 + x_2) & 4 - x_2 & 0\\ 1 & 0 & -x_1 \end{bmatrix}$$

is equivalent to the polynomial inequalities

$$0 < 3 - x_1$$

$$0 < (3 - x_1)(4 - x_2) - (x_1 + x_2)^2$$

$$0 < -x_1((3 - x_1)(4 - x_2) - (x_1 + x_2)^2) - (4 - x_2)$$

Spectraplex

- called the *spectraplex* or *free spectrahedron*
- compact
- extreme points are rank 1, of the form $X = xx^{\mathsf{T}}$ with ||x|| = 1
- \mathcal{O}_2 is isomorphic to the closed unit disk in \mathbb{R}^2

Elliptope

•
$$\mathcal{E}_n = \{ X \in \mathbb{S}^n \, | \, X \ge 0, X_{ii} = 1 \text{ for } i = 1, \dots, n \}$$

- compact
- important in combinatorial optimization

Operator norm

maximize $2 \operatorname{tr} A^{\mathsf{T}} X_{12}$ subject to $\operatorname{tr} \begin{bmatrix} X_{11} & X_{12} \\ X_{12}^{\mathsf{T}} & X_{22} \end{bmatrix} = 1$ $X \succeq 0$

$$\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & \begin{bmatrix} tI & A\\ A^{\mathsf{T}} & tI \end{bmatrix} \succeq 0 \end{array}$$

- dual pair of SDPs
- value equal to the operator norm $\|A\|$
- figure shows unit ball for $A = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$

