EE464: Convexity Review

Linear programming

Semidefinite programming

Linear programming

Linear programming

a linear program in standard primal form

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

- many other forms, e.g., using slack variables or splitting variables
- feasible set is intersection of affine subspace with nonnegative orthant
- intersection of two convex sets, hence convex
- a polyhedron is the intersection of finitely many closed halfspaces
- a bounded polyhedron is called a polytope

Dual LP

maximize	$b^{\top} y$
subject to	$A^{\top} y \leq c$

- again, optimizing a linear function over a polyhedron
- several direct relationships to the primal problem

Complexity of LP

- $A \in \mathbb{R}^{m \times n}$
- L is bit-length of the input
- Klee and Minty (1972) example; simplex algorithm takes 2^{n} steps
- Khachiyan (1979) gave (impractical) ellipsoid algorithm taking $O\left(n^{6} L^{2}\right)$
- i.e., polynomial in the Turing model, called weakly polynomial time
- Karmarkar (1984) gave practical interior-point method, also weakly polynomial
- unknown if there is a strongly polynomial algorithm, i.e., one polynomial in n, m

Example: Linear program

$$
\begin{aligned}
& \text { minimize } \\
& x_{1}+x_{2} \\
& \text { subject to } \quad 3 x_{1}+x_{2} \geq 3 \\
& x_{2} \geq 1 \\
& x_{1} \leq 4 \\
& -x_{1}+5 x_{2} \leq 20 \\
& x_{1}+4 x_{2} \leq 20
\end{aligned}
$$

Properties of linear programs

- feasible set is a polyhedron, hence has finitely many extreme points and extreme rays
- every polyhedron P has the form

$$
P=\operatorname{conv}\left(u_{1}, \ldots, u_{r}\right)+\operatorname{cone}\left(v_{1}, \ldots, v_{s}\right)
$$

where u_{1}, \ldots, u_{r} are the vertices and v_{1}, \ldots, v_{r} are the extreme rays

- the vertices provide an alternative representation of a polytope
- the representation of the feasible set can affect the practical computational cost of solving a linear program

Properties of linear programs

- if optimal value is achieved, then it is achieved at an extreme point
- for a polyhedron, extreme points are rational functions of A, b, c

Properties of linear programs

- weak duality: if x, y are both feasible points, then

$$
\begin{aligned}
& \qquad c^{\top} x-b^{\top} y \geq 0 \\
& \text { because } c^{\top} x-b^{\top} y=x^{\top}\left(c-A^{\top} y\right) \geq 0
\end{aligned}
$$

- strong duality: the primal is feasible iff the dual is feasible. If feasible, they have the same optimal value
- complementary slackness: if x, y feasible, then they are optimal iff

$$
x_{i}\left(c-A^{\top} y\right)_{i}=0 \quad \text { for all } i
$$

(follows from strong duality and above inequality)

Semidefinite programming

Positive definite matrices

- $\mathbb{S}^{n}, \mathbb{S}_{++}^{n}$, and \mathbb{S}_{++}^{n} denote the sets of $n \times n$ symmetric, positive semidefinite, and positive definite matrices
- $S \subset \mathbb{R}^{m}$ is called a spectrahedron if it has the form

$$
S=\left\{x \in \mathbb{R}^{m} \mid A_{0}+\sum_{i=1}^{m} A_{i} x_{i} \succeq 0\right\}
$$

where A_{0}, \ldots, A_{m} are symmetric matrices

- above inequality is called a linear matrix inequality
- a spectrahedron is closed and convex, since it is the intersection of an affine subspace and the positive semidefinite cone

Positive definite matrices

- some authors define a spectrahedron as a set of matrices

$$
\left\{A_{0}+\sum_{i=1}^{m} A_{i} x_{i} \mid x \in S\right\}
$$

this set is affinely equivalent to S if the A_{i} are linearly independent

- $S \subset \mathbb{R}^{m}$ is called a projected spectrahedron if it has the form

$$
S=\left\{x \in \mathbb{R}^{m} \mid \exists y A_{0}+\sum_{i=1}^{m} A_{i} x_{i}+\sum_{i=1}^{p} B_{i} y_{i} \succeq 0\right\}
$$

where $A_{0}, \ldots, A_{m}, B_{1}, \ldots, B_{p}$ are symmetric matrices

Example: Spectrahedron

$$
\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\,\left[\begin{array}{ccc}
x+1 & 0 & y \\
0 & 2 & -x-1 \\
y & -x-1 & 2
\end{array}\right] \geq 0\right.\right\}
$$

notice that the determinant $3+x-3 x^{2}-x^{3}-2 y^{2}$ vanishes on the boundary

Example: Projected spectrahedron

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid \exists z \in \mathbb{R},\left[\begin{array}{cc}
z+y & 2 z-x \\
2 z-x & z-y
\end{array}\right] \geq 0,0 \leq z \leq 1\right\}
$$

this set is the convex hull of $(x-2)^{2}+y^{2} \leq 1$ and the origin it is not a spectrahedron

Semidefinite programming

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \quad \text { for all } i=1, \ldots, m \\
& X \succeq 0
\end{aligned}
$$

- variables are $X \in \mathbb{S}^{n}$
- $C, A_{i} \in \mathbb{S}^{n}$ and $b \in \mathbb{R}^{m}$
- formally similar to LP
- convex, since spectrahedron is convex

Example: Semidefinite programming

$$
\begin{aligned}
\operatorname{minimize} & 2 x_{11}+2 x_{12} \\
\text { subject to } & x_{11}+x_{22}=1 \\
& {\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{12} & x_{22}
\end{array}\right] \succeq 0 }
\end{aligned}
$$

- standard form, with

$$
C=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right] \quad A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad b_{1}=1
$$

- feasible set is not polyhedral
- optimal is not rational: $X=\frac{1}{4}\left[\begin{array}{cc}2-\sqrt{2} & -\sqrt{2} \\ -\sqrt{2} & 2+\sqrt{2}\end{array}\right]$

Semidefinite programming

there may not exist an optimal solution

$$
\begin{aligned}
\operatorname{minimize} & t \\
\text { subject to } & {\left[\begin{array}{ll}
x & 1 \\
1 & t
\end{array}\right] \succeq 0 }
\end{aligned}
$$

Dual SDP

$$
\begin{array}{ll}
\text { maximize } & b^{\top} y \\
\text { subject to } & \sum_{i=1}^{m} A_{i} y_{i} \preceq C
\end{array}
$$

- weak duality; if X, y are feasible, then $\langle C, X\rangle-b^{\top} y \geq 0$

Strong duality

define the dual value

$$
d^{\star}=\sup \left\{b^{\top} y \mid \sum_{i=1}^{m} A_{i} y_{i} \preceq C\right\}
$$

Strong duality

if the dual is strictly feasible, i.e., there exists y such that

$$
\sum_{i=1}^{m} A_{i} y_{i} \prec C
$$

and the dual problem is bounded, i.e., d^{\star} is finite, then

- primal feasibility: there exists $X \succeq 0$ such that

$$
\left\langle A_{i}, X\right\rangle=b_{i} \quad \text { for all } i=1, \ldots, m
$$

- optimality: that X is optimal

$$
\langle C, X\rangle=d^{\star}
$$

Semialgebraic sets

the feasible set of an SDP has the form

$$
\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0 \text { for all } i=1, \ldots, m\right\}
$$

- f_{1}, \ldots, f_{m} is are polynomials
- called a basic closed semialgebraic set defined by
- because a matrix $A \succ 0$ if and only if

$$
\operatorname{det}\left(A_{k}\right)>0 \text { for } k=1, \ldots, n
$$

where A_{k} is the submatrix of A consisting of the first k rows and columns

Example: semialgebraic set

$0 \prec\left[\begin{array}{ccc}3-x_{1} & -\left(x_{1}+x_{2}\right) & 1 \\ -\left(x_{1}+x_{2}\right) & 4-x_{2} & 0 \\ 1 & 0 & -x_{1}\end{array}\right]$
is equivalent to the polynomial inequalities

$0<3-x_{1}$
$0<\left(3-x_{1}\right)\left(4-x_{2}\right)-\left(x_{1}+x_{2}\right)^{2}$
$0<-x_{1}\left(\left(3-x_{1}\right)\left(4-x_{2}\right)-\left(x_{1}+x_{2}\right)^{2}\right)-\left(4-x_{2}\right)$

Spectraplex

$$
\mathcal{O}_{n}=\left\{X \in \mathbb{S}^{n} \mid X \succeq 0, \operatorname{tr} X=1\right\}
$$

- called the spectraplex or free spectrahedron
- compact
- extreme points are rank 1 , of the form $X=x x^{\top}$ with $\|x\|=1$
- \mathcal{O}_{2} is isomorphic to the closed unit disk in \mathbb{R}^{2}

Elliptope

- $\mathcal{E}_{n}=\left\{X \in \mathbb{S}^{n} \mid X \geq 0, X_{i i}=1\right.$ for $\left.i=1, \ldots, n\right\}$
- compact
- important in combinatorial optimization

Operator norm

maximize	$2 \operatorname{tr} A^{\top} X_{12}$
subject to	$\operatorname{tr}\left[\begin{array}{ll}X_{11} & X_{12} \\ X_{12}^{\top} & X_{22}\end{array}\right]=1$
	$X \succeq 0$

minimize	t
subject to	$\left[\begin{array}{cc}t I & A \\ A^{\top} & t I\end{array}\right] \succeq 0$

- dual pair of SDPs
- value equal to the operator norm $\|A\|$
- figure shows unit ball for $A=\left[\begin{array}{ll}x & y \\ y & z\end{array}\right]$

