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Linear programming

a linear program in standard primal form

minimize cTx

subject to Ax = b

x ≥ 0

• many other forms, e.g., using slack variables or splitting variables

• feasible set is intersection of affine subspace with nonnegative orthant

• intersection of two convex sets, hence convex

• a polyhedron is the intersection of finitely many closed halfspaces

• a bounded polyhedron is called a polytope
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Dual LP

maximize bTy

subject to ATy ≤ c

• again, optimizing a linear function over a polyhedron

• several direct relationships to the primal problem
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Complexity of LP

• A ∈ Rm×n

• L is bit-length of the input

• Klee and Minty (1972) example; simplex algorithm takes 2n steps

• Khachiyan (1979) gave (impractical) ellipsoid algorithm taking O(n6L2)

• i.e., polynomial in the Turing model, called weakly polynomial time

• Karmarkar (1984) gave practical interior-point method, also weakly polynomial

• unknown if there is a strongly polynomial algorithm, i.e., one polynomial in n,m
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Example: Linear program

minimize x1 + x2

subject to 3x1 + x2 ≥ 3

x2 ≥ 1

x1 ≤ 4

−x1 + 5x2 ≤ 20

x1 + 4x2 ≤ 20
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Properties of linear programs

• feasible set is a polyhedron, hence has finitely many extreme points and extreme rays

• every polyhedron P has the form

P = conv(u1, . . . , ur) + cone(v1, . . . , vs)

where u1, . . . , ur are the vertices and v1, . . . , vr are the extreme rays

• the vertices provide an alternative representation of a polytope

• the representation of the feasible set can affect the practical computational cost of
solving a linear program
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Properties of linear programs

• if optimal value is achieved, then it is achieved at an extreme point

• for a polyhedron, extreme points are rational functions of A, b, c
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Properties of linear programs

• weak duality: if x, y are both feasible points, then

cTx− bTy ≥ 0

because cTx− bTy = xT(c− ATy) ≥ 0

• strong duality: the primal is feasible iff the dual is feasible. If feasible, they have the
same optimal value

• complementary slackness: if x, y feasible, then they are optimal iff

xi(c− ATy)i = 0 for all i

(follows from strong duality and above inequality)
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Semidefinite programming
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Positive definite matrices

• Sn, Sn+, and Sn++ denote the sets of n × n symmetric, positive semidefinite, and
positive definite matrices

• S ⊂ Rm is called a spectrahedron if it has the form

S =

{
x ∈ Rm |A0 +

m∑
i=1

Aixi � 0

}
where A0, . . . , Am are symmetric matrices

• above inequality is called a linear matrix inequality

• a spectrahedron is closed and convex, since it is the intersection of an affine subspace
and the positive semidefinite cone
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Positive definite matrices

• some authors define a spectrahedron as a set of matrices{
A0 +

m∑
i=1

Aixi |x ∈ S

}
this set is affinely equivalent to S if the Ai are linearly independent

• S ⊂ Rm is called a projected spectrahedron if it has the form

S =

{
x ∈ Rm | ∃y A0 +

m∑
i=1

Aixi +

p∑
i=1

Biyi � 0

}
where A0, . . . , Am, B1, . . . , Bp are symmetric matrices
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Example: Spectrahedron

(x, y) ∈ R2 |

x + 1 0 y
0 2 −x− 1
y −x− 1 2

 ≥ 0
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notice that the determinant 3 + x− 3x2 − x3 − 2y2 vanishes on the boundary
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Example: Projected spectrahedron

{
(x, y) ∈ R2 | ∃z ∈ R,

[
z + y 2z − x
2z − x z − y

]
≥ 0, 0 ≤ z ≤ 1

}
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this set is the convex hull of (x− 2)2 + y2 ≤ 1 and the origin

it is not a spectrahedron
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Semidefinite programming

minimize 〈C,X〉
subject to 〈Ai, X〉 = bi for all i = 1, . . . ,m

X � 0

• variables are X ∈ Sn

• C,Ai ∈ Sn and b ∈ Rm

• formally similar to LP

• convex, since spectrahedron is convex
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Example: Semidefinite programming

minimize 2x11 + 2x12

subject to x11 + x22 = 1[
x11 x12
x12 x22

]
� 0

• standard form, with

C =

[
2 1
1 0

]
A1 =

[
1 0
0 1

]
b1 = 1

• feasible set is not polyhedral

• optimal is not rational: X = 1
4

[
2−
√
2 −

√
2

−
√
2 2 +

√
2

]
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Semidefinite programming

there may not exist an optimal solution

minimize t

subject to

[
x 1
1 t

]
� 0
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Dual SDP

maximize bTy

subject to
m∑
i=1

Aiyi � C

• weak duality; if X, y are feasible, then 〈C,X〉 − bTy ≥ 0
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Strong duality

define the dual value

d? = sup
{
bTy |

m∑
i=1

Aiyi � C
}
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Strong duality

if the dual is strictly feasible, i.e., there exists y such that

m∑
i=1

Aiyi ≺ C

and the dual problem is bounded, i.e., d? is finite, then

• primal feasibility: there exists X � 0 such that

〈Ai, X〉 = bi for all i = 1, . . . ,m

• optimality: that X is optimal

〈C,X〉 = d?
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Semialgebraic sets

the feasible set of an SDP has the form{
x ∈ Rn | fi(x) ≥ 0 for all i = 1, . . . ,m

}

• f1, . . . , fm is are polynomials

• called a basic closed semialgebraic set defined by

• because a matrix A � 0 if and only if

det(Ak) > 0 for k = 1, . . . , n

where Ak is the submatrix of A consisting of the first k rows and columns
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Example: semialgebraic set

0 ≺

 3− x1 −(x1 + x2) 1
−(x1 + x2) 4− x2 0

1 0 −x1



is equivalent to the polynomial
inequalities

0 < 3− x1

0 < (3− x1)(4− x2)− (x1 + x2)
2

0 < −x1((3− x1)(4− x2)− (x1 + x2)
2)− (4− x2)



-0.5 0.0 0.5 1.0 1.5
-1.0

-0.5

0.0

0.5

1.0

x11

x 1
2

23

Spectraplex

On = {X ∈ Sn |X � 0, trX = 1}

• called the spectraplex or free spectrahedron

• compact

• extreme points are rank 1, of the form X = xxT with ‖x‖ = 1

• O2 is isomorphic to the closed unit disk in R2
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Elliptope

• En = {X ∈ Sn |X ≥ 0, Xii = 1 for i = 1, . . . , n}

• compact

• important in combinatorial optimization
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Operator norm

maximize 2 trATX12

subject to tr

[
X11 X12

XT
12 X22

]
= 1

X � 0

minimize t

subject to

[
tI A
AT tI

]
� 0

• dual pair of SDPs

• value equal to the operator norm ‖A‖

• figure shows unit ball for A =

[
x y
y z

]


