EE464 Elimination

ideal membership

given $h, f_{1}, \ldots, f_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$, we'd like to test if

$$
h \in \operatorname{ideal}\left\{f_{1}, \ldots, f_{m}\right\}
$$

procedure

- compute the Groebner basis g_{1}, \ldots, g_{s} for f_{1}, \ldots, f_{m}
- divide h by g_{1}, \ldots, g_{s}; the remainder $r=0$ if and only if

$$
h \in \operatorname{ideal}\left\{f_{1}, \ldots, f_{m}\right\}
$$

this works independent of the monomial order or the order in which division is performed.

example

for $f_{1}=x z-y^{2}, f_{2}=x^{3}-z^{2}$ in grlex order, the Groebner basis is

$$
x z-y^{2} \quad x^{3}-z^{2} \quad x^{2} y^{2}-z^{3} \quad x y^{4}-z^{4} \quad y^{6}-z^{5}
$$

check membership of $h=-4 x^{2} y^{2} z^{2}+y^{6}+3 z^{5}$, we find

$$
h=\left(-4 x y^{2} z-4 y^{4}\right)\left(x z-y^{2}\right)+(-3)\left(y^{6}-z^{5}\right)
$$

so $h \in \operatorname{ideal}\left\{f_{1}, f_{2}\right\}$
also if $t=x y-5 z^{2}+x$, then t is not in the ideal, since its leading term is not divisible by any of the leading terms of the Groebner basis

example: solving polynomial equations

consider the equations

$$
\begin{array}{r}
x^{2}+y^{2}+z^{2}-1=0 \\
x^{2}-y+z^{2}=0 \\
x-z=0
\end{array}
$$

a Groebner basis in lex order gives equivalent equations

$$
\begin{array}{r}
x-z=0 \\
y-2 z^{2}=0 \\
4 z^{4}+2 z^{2}-1=0
\end{array}
$$

the third equation depends only on z; so we can solve it, then substitute to find x and y

example 2

we'd like to solve the following equations

$$
\begin{aligned}
-2 w x+3 x^{2}+2 y z & =0 \\
-2 w y+2 x z & =0 \\
-2 w z+2 x y-2 z & =0 \\
x^{2}+y^{2}+z^{2}-1 & =0
\end{aligned}
$$

example 2 continued

a Groebner basis in lex order $w>x>y>z$ gives equivalent equations

$$
\begin{aligned}
7670 w-11505 x-11505 y z-335232 z^{6}+477321 z^{4}-134419 z^{2} & =0 \\
x^{2}+y^{2}+z^{2}-1 & =0 \\
3835 x y-19584 z^{5}+25987 z^{3}-6403 z & =0 \\
-3835 x z-3835 y z^{2}+1152 z^{5}+1404 z^{3}-2556 z & =0 \\
-3835 y^{3}-3835 y z^{2}+3835 y+9216 z^{5}-11778 z^{3}+2562 z & =0 \\
3835 y^{2} z-6912 z^{5}+10751 z^{3}-3839 z & =0 \\
118 y z^{3}-118 y z-1152 z^{6}+1605 z^{4}-453 z^{2} & =0 \\
-1152 z^{7}+1763 z^{5}-655 z^{3}+44 z & =0
\end{aligned}
$$

again, the Groebner basis eliminates variables successively
similar to back-substitution in Gaussian elimination

Elimination

- the above examples illustrate elimination
- the Groebner basis algorithm successively removes terms
this is similar to Gaussian elimination; a triangular structure results, i.e, some polynomials depend only on x_{n}
some polynomials depend only on x_{n-1}, x_{n}
some polynomials depend only on x_{n-2}, x_{n-1}, x_{n} etc.

Implicitization

a parametrization of the circle is

$$
\begin{aligned}
& x=\frac{1-t^{2}}{1+t^{2}} \\
& y=\frac{2 t}{1+t^{2}}
\end{aligned}
$$

clear denominators

$$
t^{2} y-2 t+y=0 \quad t^{2} x+t^{2}+x-1=0
$$

Groebner basis in lex order $t>x>y$ is

$$
t x+t-y \quad t y+x-1 \quad x^{2}+y^{2}-1
$$

so for any t every (x, y) lies on the circle

- if $\left\{f_{1}, \ldots, f_{m}\right\}$ and $\left\{g_{1}, \ldots, g_{m}\right\}$ are two bases for the same ideal, then they have the same feasible sets
- in particular, in the above example, this implies that every solution to the implicit equations satisfies

$$
x^{2}+y^{2}=1
$$

that is $\mathcal{V}\left\{f_{1}, \ldots, f_{m}\right\} \subset \mathcal{V}\left\{g_{3}\right\}$

- but the set on the RHS is strictly bigger, it contains $(-1,0)$
- because we have ignored g_{1} and g_{2}

the elimination ideal

the Groebner basis $G=\left\{g_{1}, \ldots, g_{m}\right\}$ w.r.t. lex order consists of

- polynomials in $I=\operatorname{ideal}\left\{g_{1}, \ldots, g_{m}\right\}$
- which do not contain variables x_{1}, \ldots, x_{k} for some k
that is, it finds polynomials in

$$
I_{k}=\operatorname{ideal}\left\{g_{1}, \ldots, g_{m}\right\} \cap \mathbb{K}\left[x_{k+1}, \ldots, x_{n}\right]
$$

- I_{k} is called the k 'th elimination ideal of I
- it is an ideal in $\mathbb{K}\left[x_{k+1}, \ldots, x_{n}\right]$
- every $f \in I_{k}$ is a polynomial consequence of g_{1}, \ldots, g_{m} which depends only on x_{k+1}, \ldots, x_{n}

the elimination theorem

suppose $G=\left\{g_{1}, \ldots, g_{m}\right\}$ is a Groebner basis for I w.r.t. lex order with $x_{1}>$ $x_{2}>\cdots>x_{n}$; then

$$
G_{k}=G \cap \mathbb{K}\left[x_{k+1}, \ldots, x_{n}\right]
$$

is a Groebner basis for $I_{k}=I \cap \mathbb{K}\left[x_{k+1}, \ldots, x_{n}\right]$
we need to show

$$
\text { ideal }\left\{\operatorname{lt}\left(I_{k}\right)\right\}=\operatorname{ideal}\left\{\operatorname{lt}\left(G_{k}\right)\right\}
$$

since $I_{k} \supset G_{k}$, all we need to show is LHS \subset RHS
any $f \in I_{k}$ is divisible by $\operatorname{lt}\left(g_{i}\right)$ for some g_{i}, and f does not contain variables x_{1}, \ldots, x_{k}, so neither does $\operatorname{lt}\left(g_{i}\right)$;
since we are using lex order, neither does g_{i}, so $g_{i} \in G_{k}$

example

consider polynomials $x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1$

Groebner basis is

$$
\begin{array}{ll}
g_{1}=x+y+z^{2}-1 & g_{2}=y^{2}-y-z^{2}+z \\
g_{3}=2 y z^{2}+z^{4}-z^{2} & g_{4}=z^{6}-4 z^{4}+4 z^{3}-z^{2}
\end{array}
$$

so we have

$$
\begin{aligned}
& I_{1}=I \cap \mathbb{K}[y, z]=\operatorname{ideal}\left\{g_{2}, g_{3}, g_{4}\right\} \\
& I_{2}=I \cap \mathbb{K}[z]=\operatorname{ideal}\left\{g_{4}\right\}
\end{aligned}
$$

- I_{n-1} is always principal
- any polynomial in I which does not contain x, y is a multiple of g_{4}
geometric interpretation
in parametrization or elimination, we are interested in

$$
\left\{\left(x_{k+1}, \ldots, x_{n}\right) \mid \text { there exists } x_{1}, \ldots, x_{k} \text { such that } x \in \mathcal{V}\left\{f_{1}, \ldots, f_{m}\right\}\right\}
$$

this is the projection of $\mathcal{V}\left(f_{1}, \ldots, f_{m}\right)$ onto
$x_{1}=0, \ldots, x_{k}=0$
denote the projection map by

$$
\begin{aligned}
P_{k}: & \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-k} \\
& x \mapsto\left(0, \ldots, 0, x_{k+1}, \ldots, x_{n}\right)
\end{aligned}
$$

we have

$$
P_{k} \mathcal{V}(I) \subset \mathcal{V}\left(I_{k}\right)
$$

projection

suppose I is an ideal, and I_{k} is the k 'th elimination ideal; then

$$
P_{k} \mathcal{V}(I) \subset \mathcal{V}\left(I_{k}\right)
$$

because if $f \in I_{k}$ then $f(x)=0$ for all $x \in \mathcal{V}(I)$
but since f doesn't depend on x_{1}, \ldots, x_{k},

$$
f\left(P_{k} x\right)=0 \quad \text { for all } \quad x \in \mathcal{V}(I)
$$

which means

$$
f(y)=0 \quad \text { for all } \quad y \in P_{k} \mathcal{V}(I)
$$

