EE464 Fourier-Motzkin Elimination
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projection of polytopes

suppose we have a polytope
S:{IGR”|Ax§b}
we'd like to construct the projection onto
{$€R7’|x1:0}

call this projection P(S)
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projection of polytopes

» intuitively, P(S) is a polytope; what are its vertices?

every face of P(S) is the projection of a face of S

> hence every vertex of P(S) is the projection of some vertex of S

(if it’s the projection of an edge, then its the projection of the endpoints of
the edge also)

» so one algorithm is

» find the vertices of S, and project them

» find the convex hull of the projected points

but how do we do this?
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projection of polytopes

what are the facets of P(S)?
we'll see that the number of facets can increase enormously

an upper bound; if S C R™, and has m facets, then the projection onto R*~!

has less than
m?
4

facets
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example

—4x1 — a0 < -9 (1) 3
—x1 — 2z < —4 (2)

—2r14+ 22 <0 (3) 2
—To — 629 < —6 (4)

@1+ 215 < 11 (5) ,
621 + 229 < 17 (6)
)

.’I?2§4 (7




6

valid inequalities

we know we can generate new valid inequalities from the given set; e.g., if

alT:c <b and agTz < by

then
Al(bflfalTx) + /\g(bgfaQTx) >0

is a valid inequality for all A;, Ao >0

here we are applying the inference rule

fi, f2>0 = Mfi+Aafa>0
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projection
we'd like to find the inequalities that define the projection P(S)

P(S) = {x2 | there exists z1 such that Bl] € S}
2

some other ways to say this

» we'd like to find valid inequalities that do not depend on xy; i.e., the
intersection
cone{fi,..., fm} NR[za,...,z,]

which we might call the elimination cone

» we'd like to perform quantifier elimination to remove the there exists and
find a basic semialgebraic representation of P(S)
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Fourier-Motzkin elimination

» this procedure was invented by Fourier (1827) and rediscovered by Dines
(1918) and Fourier (1936)

» similar to Gaussian elimination (1800)

we can generate inequalities of the form

(Aal + -+ Amal)z < A\by + -+ Anb,

the idea is to combine pairs of inequalities that cancel x;

since \; > 0, the members of each pair need opposite signed coefficients of x;
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example

for example, use inequalities (2) and (6)
above

—xq1 + 229 < —4
6.’51 — 2152 S 17

)

pick Ay =6 and A2 =1 to give

6(—.’131 — 2.’52) + (6.’131 — 2.’52) < 6(—4) + 17
—2.’172 S 1
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example

» any such positive linear combina-
tion of inequalities passes through
corresponding vertex (in 2d)

since that point satisfies both origi-
nal inequalities with equality, it will
also satisfy the new inequality with
equality

» the corresponding vector is in the cone generated by a; and as

so if a; and ay have opposite sign coefficients of x1, then we can pick some
element of the cone with coefficient zero.
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Fourier-Motzkin theorem

the Fourier-Motzkin theorem says

» take all pairs of inequalities with opposite sign coefficients of x;, and for
each generate a new valid inequality that eliminates z

» also take all inequalities from the original set which do not depend on z;
(i-e., (7) in this example)

this collection of inequalities defines exactly the projection of S onto 1 =0
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matrix notation

constructing such inequalities corresponds to multiplication of the original con-
straint Az < b by a positive matrix C'

in this case

1 0 0 0 4 0 0]
6 000040 [—4 1] [—9]
0100100 -1 -2 —4
06 00010 -2 1 0

C=10 010200 A=|-1 -6 b= |—6
006 0020 12 11
0001100 6 —2 17
0006010 0 1 4
00 000 0 1} ] ) o
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matrix notation

the resulting inequality system is C Az < Cb holds, since

we find

z>0and C >0

CA=

OO DD OO OO OO

—14

—14

—4
-38

—

Cb=

Cz>0

35]
14

22
34

-19
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the projection

this gives the system of inequalities for P(S) as

T2 <5 —x2 <1 0<7 —x2 < —=

Ty <17 *%S% —zy < -1 T9 < 4

» there are many redundant inequalities

» the tightest pair are
—x2 < —3 29 < 4

N =

and these define P(S)

IN
BT
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extension

» since all the generated inequalities are valid, we know that they define a
polytope that contains P(.5)

» how do we know that this is actually P(5)?

» in other words, given x5 satisfying the generated inequalities, when can we
find an extension x1 such that (z1,z3) € S?
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extension

view the original inequalities as

T2 9

TR

SR D — 2z -1l
P = _ﬂ+17
9 3 3

—6zo + 6

along with x5 <4

hence every expression on the left hand side is less than every expression on the
right, for every (z1,22) € P
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extension

if x5 satisfies every inequality with one expression from the LHS and one from
the RHS, then we must have

) 9
4 * 4
2y + 4 B et
max - < min T 17
z2 -+ =
9 3 3
—6x9 + 6

hence we can choose x; such that the original inequalities hold

» hence there is always an extension, and this proves the Fourier-Motzkin
theorem
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using Fourier-Motzkin

» by changing coordinates, and repeated application of FM, we can project a
polytope onto any subspace of R"
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feasibility

in the example above, we eliminated x; to find

1
—CU2§—§ r9 < 4

we can now eliminate x5 to find
0<

N~

which is obviously true; it's valid for every x € .S, but happens to be independent
of x

if we had arrived instead at
0< -2

the we'd have derived a contradiction, and the original system of inequalities must
be infeasible
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example

consider the infeasible system

T Z 0
To Z 0
X1 =+ Zo S — 2
write this as —x1 <0 T+ 20 < =2 —22<0
eliminating x1 gives
Tg < —2 —x2 <0

and subsequently eliminating xo gives
0< -2

which is a contradiction
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matrix notation

-1 0
in matrix notation we have A = | 1 1| and b=
0o -1
eliminating =1 is multiplication
1 1 0
—bh)<
[0 0 1] (Az —b) <0

and similarly to eliminate x5 we form
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matrix notation

the final elimination is
[1 1 1] (Az—0) <0

so we have found a vector A such that

» A >0 (since its a product of positive matrices)

» \TA=0and A\Tb < 0 (since it gives a contradiction)

here \ is a certificate of infeasibility
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Farkas Lemma
so Fourier-Motzkin gives a proof of Farkas lemma (Farkas 1894)

the primal problem is

dz Az <D

the dual problem is a strong alternative
X ATA=0, NTb<0, A>0
the beauty of this proof is that it is algebraic

» does not require any compactness or topology
» works over general fields, e.g. Q,

» it is a syntactic proof, just requiring the axioms of positivity
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Gaussian Elimination

we can also view Gaussian elimination in the same way

» constructing linear combination of rows is inference

every such combination is a valid equality

» if we find Ox = 1 then we have a proof of infeasibility

the corresponding strong duality result is

» primal: doz Az =0

> dual:  3A ATA=0,ATb#£0

of course, this is just the usual range-nullspace duality
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linear programming

we can also use Farkas lemma to solve linear programs!

formulate the standard LP as the feasibility problem
Ax <b

and do a bisection search on t, testing feasibility via Fourier-Motzkin

of course, this is very inefficient compared to simplex or interior-point methods



26
computation

one feature of FM is that it allows exact rational arithmetic

» just like Groebner basis methods

» consequently very slow; the numerators and denominators in the rational
numbers become large

» even Gaussian elimination is slow in exact arithmetic (but still polynomial)

» solving the inequalities using interior-point methods is much faster than
testing feasibility using FM

» allows floating-point arithmetic

» asimilar speed advantage is obtained by directly solving the linear equations
in p-satz and n-satz refutations



