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EE464 Fourier-Motzkin Elimination
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projection of polytopes

suppose we have a polytope

S =
{
x ∈ Rn | Ax ≤ b

}
we’d like to construct the projection onto{

x ∈ Rn | x1 = 0
}

call this projection P (S)
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projection of polytopes

I intuitively, P (S) is a polytope; what are its vertices?

every face of P (S) is the projection of a face of S

I hence every vertex of P (S) is the projection of some vertex of S

(if it’s the projection of an edge, then its the projection of the endpoints of
the edge also)

I so one algorithm is

I find the vertices of S, and project them

I find the convex hull of the projected points

but how do we do this?
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projection of polytopes

what are the facets of P (S)?

we’ll see that the number of facets can increase enormously

an upper bound; if S ⊂ Rn, and has m facets, then the projection onto Rn−1

has less than ⌊
m2

4

⌋
facets
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example

−4x1 − x2 ≤ −9 (1)

−x1 − 2x2 ≤ −4 (2)

−2x1 + x2 ≤ 0 (3)

−x2 − 6x2 ≤ −6 (4)

x1 + 2x2 ≤ 11 (5)

6x1 + 2x2 ≤ 17 (6)

x2 ≤ 4 (7)
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valid inequalities

we know we can generate new valid inequalities from the given set; e.g., if

aT1 x ≤ b1 and aT2 x ≤ b2

then
λ1(b− 1− aT1 x) + λ2(b2 − aT2 x) ≥ 0

is a valid inequality for all λ1, λ2 ≥ 0

here we are applying the inference rule

f1, f2 ≥ 0 =⇒ λ1f1 + λ2f2 ≥ 0
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projection

we’d like to find the inequalities that define the projection P (S)

P (S) =

{
x2 | there exists x1 such that

[
x1
x2

]
∈ S

}

some other ways to say this

I we’d like to find valid inequalities that do not depend on x1; i.e., the
intersection

cone{f1, . . . , fm} ∩ R[x2, . . . , xn]

which we might call the elimination cone

I we’d like to perform quantifier elimination to remove the there exists and
find a basic semialgebraic representation of P (S)
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Fourier-Motzkin elimination

I this procedure was invented by Fourier (1827) and rediscovered by Dines
(1918) and Fourier (1936)

I similar to Gaussian elimination (1800)

we can generate inequalities of the form

(λ1a
T
1 + · · ·+ λma

T
m)x ≤ λ1b1 + · · ·+ λmbm

the idea is to combine pairs of inequalities that cancel x1

since λi ≥ 0, the members of each pair need opposite signed coefficients of x1



9

example

for example, use inequalities (2) and (6)
above

−x1 + 2x2 ≤ −4
6x1 − 2x2 ≤ 17

pick λ1 = 6 and λ2 = 1 to give

6(−x1 − 2x2) + (6x1 − 2x2) ≤ 6(−4) + 17

−2x2 ≤ 1
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example

I any such positive linear combina-
tion of inequalities passes through
corresponding vertex (in 2d)

since that point satisfies both origi-
nal inequalities with equality, it will
also satisfy the new inequality with
equality

I the corresponding vector is in the cone generated by a1 and a2

so if a1 and a2 have opposite sign coefficients of x1, then we can pick some
element of the cone with coefficient zero.
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Fourier-Motzkin theorem

the Fourier-Motzkin theorem says

I take all pairs of inequalities with opposite sign coefficients of x1, and for
each generate a new valid inequality that eliminates x1

I also take all inequalities from the original set which do not depend on x1
(i.e., (7) in this example)

this collection of inequalities defines exactly the projection of S onto x1 = 0
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matrix notation

constructing such inequalities corresponds to multiplication of the original con-
straint Ax ≤ b by a positive matrix C

in this case

C =



1 0 0 0 4 0 0
6 0 0 0 0 4 0
0 1 0 0 1 0 0
0 6 0 0 0 1 0
0 0 1 0 2 0 0
0 0 6 0 0 2 0
0 0 0 1 1 0 0
0 0 0 6 0 1 0
0 0 0 0 0 0 1


A =



−4 −1
−1 −2
−2 1
−1 −6
1 2
6 −2
0 1


b =



−9
−4
0
−6
11
17
4


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matrix notation

the resulting inequality system is CAx ≤ Cb holds, since

x ≥ 0 and C ≥ 0 =⇒ Cx ≥ 0

we find

CA =



0 7
0 −14
0 0
0 −14
0 5
0 2
0 −4
0 −38
0 1


Cb =



35
14
7
−7
22
34
5

−19
4


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the projection

this gives the system of inequalities for P (S) as

x2 ≤ 5 −x2 ≤ 1 0 ≤ 7 −x2 ≤ −
1

2
x2 ≤ 4 2

5

x2 ≤ 17 −x2 ≤ 4
5 −x2 ≤ − 1

2 x2 ≤ 4

I there are many redundant inequalities

I the tightest pair are
−x2 ≤ − 1

2 x2 ≤ 4

and these define P (S)
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extension

I since all the generated inequalities are valid, we know that they define a
polytope that contains P (S)

I how do we know that this is actually P (S)?

I in other words, given x2 satisfying the generated inequalities, when can we
find an extension x1 such that (x1, x2) ∈ S?



16

extension

view the original inequalities as

x2
4

+
9

4

−2x2 + 4

x2
2

−6x2 + 6


≤ x1 ≤


− 2x2 − 11

− x1
3

+
17

3

along with x2 ≤ 4

hence every expression on the left hand side is less than every expression on the
right, for every (x1, x2) ∈ P
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extension

if x2 satisfies every inequality with one expression from the LHS and one from
the RHS, then we must have

max



x2
4

+
9

4

−2x2 + 4

x2
2

−6x2 + 6


≤ min


− 2x2 − 11

− x1
3

+
17

3



hence we can choose x1 such that the original inequalities hold

I hence there is always an extension, and this proves the Fourier-Motzkin
theorem
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using Fourier-Motzkin

I by changing coordinates, and repeated application of FM, we can project a
polytope onto any subspace of Rn
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feasibility

in the example above, we eliminated x1 to find

−x2 ≤ −
1

2
x2 ≤ 4

we can now eliminate x2 to find

0 ≤ 7

2

which is obviously true; it’s valid for every x ∈ S, but happens to be independent
of x

if we had arrived instead at
0 ≤ −2

the we’d have derived a contradiction, and the original system of inequalities must
be infeasible
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example

consider the infeasible system

x1 ≥ 0

x2 ≥ 0

x1 + x2 ≤− 2

write this as −x1 ≤ 0 x1 + x2 ≤ −2 − x2 ≤ 0

eliminating x1 gives
x2 ≤ −2 − x2 ≤ 0

and subsequently eliminating x2 gives

0 ≤ −2

which is a contradiction
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matrix notation

in matrix notation we have A =

−1 0
1 1
0 −1

 and b =

 0
−2
0


eliminating x1 is multiplication[

1 1 0
0 0 1

]
(Ax− b) ≤ 0

and similarly to eliminate x2 we form

[
1 1

] [1 1 0
0 0 1

]
(Ax− b) ≤ 0
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matrix notation

the final elimination is [
1 1 1

]
(Ax− b) ≤ 0

so we have found a vector λ such that

I λ ≥ 0 (since its a product of positive matrices)

I λTA = 0 and λT b < 0 (since it gives a contradiction)

here λ is a certificate of infeasibility
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Farkas Lemma

so Fourier-Motzkin gives a proof of Farkas lemma (Farkas 1894)

the primal problem is

∃x Ax ≤ b

the dual problem is a strong alternative

∃λ λTA = 0, λT b < 0, λ ≥ 0

the beauty of this proof is that it is algebraic

I does not require any compactness or topology

I works over general fields, e.g. Q,

I it is a syntactic proof, just requiring the axioms of positivity
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Gaussian Elimination

we can also view Gaussian elimination in the same way

I constructing linear combination of rows is inference

every such combination is a valid equality

I if we find 0x = 1 then we have a proof of infeasibility

the corresponding strong duality result is

I primal: ∃x Ax = b

I dual: ∃λ λTA = 0, λT b 6= 0

of course, this is just the usual range-nullspace duality
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linear programming

we can also use Farkas lemma to solve linear programs!

formulate the standard LP as the feasibility problem

cTx ≤ t
Ax ≤ b

and do a bisection search on t, testing feasibility via Fourier-Motzkin

of course, this is very inefficient compared to simplex or interior-point methods
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computation

one feature of FM is that it allows exact rational arithmetic

I just like Groebner basis methods

I consequently very slow; the numerators and denominators in the rational
numbers become large

I even Gaussian elimination is slow in exact arithmetic (but still polynomial)

I solving the inequalities using interior-point methods is much faster than
testing feasibility using FM

I allows floating-point arithmetic

I a similar speed advantage is obtained by directly solving the linear equations
in p-satz and n-satz refutations


