EE464 Fourier-Motzkin Elimination

projection of polytopes

suppose we have a polytope

$$
S=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

we'd like to construct the projection onto

$$
\left\{x \in \mathbb{R}^{n} \mid x_{1}=0\right\}
$$

call this projection $P(S)$

projection of polytopes

- intuitively, $P(S)$ is a polytope; what are its vertices?

```
every face of }P(S)\mathrm{ is the projection of a face of S
```

- hence every vertex of $P(S)$ is the projection of some vertex of S (if it's the projection of an edge, then its the projection of the endpoints of the edge also)
- so one algorithm is
- find the vertices of S, and project them
- find the convex hull of the projected points
but how do we do this?

projection of polytopes

what are the facets of $P(S)$?
we'll see that the number of facets can increase enormously
an upper bound; if $S \subset R^{n}$, and has m facets, then the projection onto R^{n-1} has less than

$$
\left\lfloor\frac{m^{2}}{4}\right\rfloor
$$

facets

$$
\begin{align*}
-4 x_{1}-x_{2} & \leq-9 \tag{1}\\
-x_{1}-2 x_{2} & \leq-4 \tag{2}\\
-2 x_{1}+x_{2} & \leq 0 \tag{3}\\
-x_{2}-6 x_{2} & \leq-6 \\
x_{1}+2 x_{2} & \leq 11 \tag{5}\\
6 x_{1}+2 x_{2} & \leq 17 \tag{6}\\
x_{2} & \leq 4
\end{align*}
$$

(4)
(7)

valid inequalities

we know we can generate new valid inequalities from the given set; e.g., if

$$
a_{1}^{T} x \leq b_{1} \quad \text { and } \quad a_{2}^{T} x \leq b_{2}
$$

then

$$
\lambda_{1}\left(b-1-a_{1}^{T} x\right)+\lambda_{2}\left(b_{2}-a_{2}^{T} x\right) \geq 0
$$

is a valid inequality for all $\lambda_{1}, \lambda_{2} \geq 0$
here we are applying the inference rule

$$
f_{1}, f_{2} \geq 0 \quad \Longrightarrow \quad \lambda_{1} f_{1}+\lambda_{2} f_{2} \geq 0
$$

projection

we'd like to find the inequalities that define the projection $P(S)$

$$
P(S)=\left\{x_{2} \mid \text { there exists } x_{1} \text { such that }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \in S\right\}
$$

some other ways to say this

- we'd like to find valid inequalities that do not depend on x_{1}; i.e., the intersection

$$
\operatorname{cone}\left\{f_{1}, \ldots, f_{m}\right\} \cap \mathbb{R}\left[x_{2}, \ldots, x_{n}\right]
$$

which we might call the elimination cone

- we'd like to perform quantifier elimination to remove the there exists and find a basic semialgebraic representation of $P(S)$

Fourier-Motzkin elimination

- this procedure was invented by Fourier (1827) and rediscovered by Dines (1918) and Fourier (1936)
- similar to Gaussian elimination (1800)
we can generate inequalities of the form

$$
\left(\lambda_{1} a_{1}^{T}+\cdots+\lambda_{m} a_{m}^{T}\right) x \leq \lambda_{1} b_{1}+\cdots+\lambda_{m} b_{m}
$$

the idea is to combine pairs of inequalities that cancel x_{1}
since $\lambda_{i} \geq 0$, the members of each pair need opposite signed coefficients of x_{1}

example

for example, use inequalities (2) and (6) above

$$
\begin{aligned}
-x_{1}+2 x_{2} & \leq-4 \\
6 x_{1}-2 x_{2} & \leq 17
\end{aligned}
$$

pick $\lambda_{1}=6$ and $\lambda_{2}=1$ to give

$$
\begin{aligned}
6\left(-x_{1}-2 x_{2}\right)+\left(6 x_{1}-2 x_{2}\right) & \leq 6(-4)+17 \\
-2 x_{2} & \leq 1
\end{aligned}
$$

example

- any such positive linear combination of inequalities passes through corresponding vertex (in 2d)
since that point satisfies both original inequalities with equality, it will also satisfy the new inequality with

- the corresponding vector is in the cone generated by a_{1} and a_{2} so if a_{1} and a_{2} have opposite sign coefficients of x_{1}, then we can pick some element of the cone with coefficient zero.

Fourier-Motzkin theorem

the Fourier-Motzkin theorem says

- take all pairs of inequalities with opposite sign coefficients of x_{1}, and for each generate a new valid inequality that eliminates x_{1}
- also take all inequalities from the original set which do not depend on x_{1} (i.e., (7) in this example)
this collection of inequalities defines exactly the projection of S onto $x_{1}=0$

matrix notation

constructing such inequalities corresponds to multiplication of the original constraint $A x \leq b$ by a positive matrix C
in this case

$$
C=\left[\begin{array}{llllllr}
1 & 0 & 0 & 0 & 4 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 4 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 6 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad A=\left[\begin{array}{rr}
-4 & -1 \\
-1 & -2 \\
-2 & 1 \\
-1 & -6 \\
1 & 2 \\
6 & -2 \\
0 & 1
\end{array}\right] \quad b=\left[\begin{array}{r}
-9 \\
-4 \\
0 \\
-6 \\
11 \\
17 \\
4
\end{array}\right]
$$

matrix notation
the resulting inequality system is $C A x \leq C b$ holds, since

$$
x \geq 0 \text { and } C \geq 0 \quad \Longrightarrow \quad C x \geq 0
$$

we find

$$
C A=\left[\begin{array}{rr}
0 & 7 \\
0 & -14 \\
0 & 0 \\
0 & -14 \\
0 & 5 \\
0 & 2 \\
0 & -4 \\
0 & -38 \\
0 & 1
\end{array}\right] \quad C b=\left[\begin{array}{r}
35 \\
14 \\
7 \\
-7 \\
22 \\
34 \\
5 \\
-19 \\
4
\end{array}\right]
$$

the projection

this gives the system of inequalities for $P(S)$ as

$$
\begin{array}{lcccc}
x_{2} \leq 5 & -x_{2} \leq 1 & 0 \leq 7 & -x_{2} \leq-\frac{1}{2} & x_{2} \leq 4 \frac{2}{5} \\
x_{2} \leq 17 & -x_{2} \leq \frac{4}{5} & -x_{2} \leq-\frac{1}{2} & x_{2} \leq 4 &
\end{array}
$$

- there are many redundant inequalities
- the tightest pair are

$$
-x_{2} \leq-\frac{1}{2} \quad x_{2} \leq 4
$$

and these define $P(S)$

extension

- since all the generated inequalities are valid, we know that they define a polytope that contains $P(S)$
- how do we know that this is actually $P(S)$?
- in other words, given x_{2} satisfying the generated inequalities, when can we find an extension x_{1} such that $\left(x_{1}, x_{2}\right) \in S$?

extension

view the original inequalities as

$$
\left.\begin{array}{r}
\frac{x_{2}}{4}+\frac{9}{4} \\
-2 x_{2}+4 \\
\frac{x_{2}}{2} \\
-6 x_{2}+6
\end{array}\right\} \leq x_{1} \leq\left\{\begin{array}{l}
-2 x_{2}-11 \\
-\frac{x_{1}}{3}+\frac{17}{3}
\end{array}\right.
$$

along with $x_{2} \leq 4$
hence every expression on the left hand side is less than every expression on the right, for every $\left(x_{1}, x_{2}\right) \in P$

extension

if x_{2} satisfies every inequality with one expression from the LHS and one from the RHS, then we must have

$$
\max \left\{\begin{array}{r}
\frac{x_{2}}{4}+\frac{9}{4} \\
-2 x_{2}+4 \\
\frac{x_{2}}{2} \\
-6 x_{2}+6
\end{array}\right\} \leq \min \left\{\begin{array}{l}
-2 x_{2}-11 \\
-\frac{x_{1}}{3}+\frac{17}{3}
\end{array}\right\}
$$

hence we can choose x_{1} such that the original inequalities hold

- hence there is always an extension, and this proves the Fourier-Motzkin theorem

using Fourier-Motzkin

- by changing coordinates, and repeated application of FM, we can project a polytope onto any subspace of \mathbb{R}^{n}

feasibility

in the example above, we eliminated x_{1} to find

$$
-x_{2} \leq-\frac{1}{2} \quad x_{2} \leq 4
$$

we can now eliminate x_{2} to find

$$
0 \leq \frac{7}{2}
$$

which is obviously true; it's valid for every $x \in S$, but happens to be independent of x
if we had arrived instead at

$$
0 \leq-2
$$

the we'd have derived a contradiction, and the original system of inequalities must be infeasible

example

consider the infeasible system

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{2} \geq 0 \\
& x_{1}+x_{2} \leq-2
\end{aligned}
$$

write this as $-x_{1} \leq 0 \quad x_{1}+x_{2} \leq-2 \quad-x_{2} \leq 0$
eliminating x_{1} gives

$$
x_{2} \leq-2 \quad-x_{2} \leq 0
$$

and subsequently eliminating x_{2} gives

$$
0 \leq-2
$$

which is a contradiction
matrix notation
in matrix notation we have $A=\left[\begin{array}{cc}-1 & 0 \\ 1 & 1 \\ 0 & -1\end{array}\right]$ and $b=\left[\begin{array}{c}0 \\ -2 \\ 0\end{array}\right]$ eliminating x_{1} is multiplication

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right](A x-b) \leq 0
$$

and similarly to eliminate x_{2} we form

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right](A x-b) \leq 0
$$

matrix notation

the final elimination is

$$
\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right](A x-b) \leq 0
$$

so we have found a vector λ such that

- $\lambda \geq 0$ (since its a product of positive matrices)
- $\lambda^{T} A=0$ and $\lambda^{T} b<0$ (since it gives a contradiction)
here λ is a certificate of infeasibility

Farkas Lemma

so Fourier-Motzkin gives a proof of Farkas lemma (Farkas 1894) the primal problem is

$$
\exists x \quad A x \leq b
$$

the dual problem is a strong alternative

$$
\exists \lambda \quad \lambda^{T} A=0, \quad \lambda^{T} b<0, \quad \lambda \geq 0
$$

the beauty of this proof is that it is algebraic

- does not require any compactness or topology
- works over general fields, e.g. \mathbb{Q},
- it is a syntactic proof, just requiring the axioms of positivity

Gaussian Elimination

we can also view Gaussian elimination in the same way

- constructing linear combination of rows is inference every such combination is a valid equality
- if we find $0 x=1$ then we have a proof of infeasibility
the corresponding strong duality result is
- primal: $\quad \exists x \quad A x=b$
- dual: $\quad \exists \lambda \lambda^{T} A=0, \lambda^{T} b \neq 0$
of course, this is just the usual range-nullspace duality
linear programming
we can also use Farkas lemma to solve linear programs!
formulate the standard LP as the feasibility problem

$$
\begin{aligned}
c^{T} x & \leq t \\
A x & \leq b
\end{aligned}
$$

and do a bisection search on t, testing feasibility via Fourier-Motzkin
of course, this is very inefficient compared to simplex or interior-point methods

computation

one feature of FM is that it allows exact rational arithmetic

- just like Groebner basis methods
- consequently very slow; the numerators and denominators in the rational numbers become large
- even Gaussian elimination is slow in exact arithmetic (but still polynomial)
- solving the inequalities using interior-point methods is much faster than testing feasibility using FM
- allows floating-point arithmetic
- a similar speed advantage is obtained by directly solving the linear equations in p-satz and n-satz refutations

