EE464 Groebner Bases

Ideal membership and division

We have seen that testing feasibility of a set of polynomial equations over \mathbb{C}^{n} can be solved if we can test ideal membership.

$$
\begin{aligned}
& \text { given } f, g_{1}, \ldots, g_{m} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \text {, is it true that } \\
& \qquad f \in \operatorname{ideal}\left\{g_{1}, \ldots, g_{m}\right\}
\end{aligned}
$$

- We would like to divide the polynomial f by the g_{i}, that is, find quotients q_{1}, \ldots, q_{m} and remainder r such that

$$
f=q_{1} g_{1}+\cdots+q_{m} g_{m}+r
$$

- Clearly, if $r=0$ then $f \in \operatorname{ideal}\left\{g_{1}, \ldots, g_{m}\right\}$.
- The converse is not true unless we use a special generating set for the ideal, called a Groebner basis.
monomials
A monomial x^{α} is defined by a point $\alpha \in \mathbb{N}^{n}$; e.g.,

$$
\alpha=(1,0,2) \quad \Longrightarrow \quad x^{\alpha}=x_{1} x_{3}^{2}
$$

in the scalar division algorithm, we repeatedly subtract a multiple of the divisor g from f

- the multiple is chosen to cancel the leading term
- the algorithm stops when the remainder is as small as possible
we need to specify an ordering on monomials for both of these steps
e.g., if $f=x^{2}$ and $g=x^{2}-y^{2}$, then

$$
f=0 g+x^{2} \quad \text { and } \quad f=1 g+y^{2}
$$

which is the smaller remainder?
note orderings are also important in Gaussian elimination

lex order

in lexicographic order, define $\alpha<\beta$ if the leftmost non-zero entry of $\beta-\alpha$ is positive; e.g.,

$$
\begin{array}{cc}
(1,0,0)<(2,0,0) & x<x^{2} \\
(1,2,0)<(1,2,1) & x y<x y z \\
(0,1,0)<(8,0,0) & y<x^{8} \\
(0,8,0)<(1,0,0) & y^{8}<x
\end{array}
$$

called lexicographic after dictionary ordering; think of α_{i} as letters
the order depends on the ordering of the variables
in a polynomial, order the terms in decreasing order

$$
f=\underbrace{-5 x^{3} y}_{x^{3}}+\underbrace{7 x^{2} y^{2}+3 x^{2} y}_{x^{2}}+\underbrace{4 x y^{2} z}_{x^{1}}+\underbrace{4 y z^{2}}_{x^{0}}
$$

grlex order
in graded lexicographic order, define $\alpha<\beta$ if

$$
|\alpha|<|\beta| \quad \text { or } \quad|\alpha|=|\beta| \text { and } \alpha<_{\operatorname{lex}} \beta
$$

i.e., smallest degree always comes first; break ties using lex order

$$
f=-5 x^{3} y+7 x^{2} y^{2}+4 x y^{2} z+3 x^{2} y+4 y z^{2}
$$

order properties

both of these orderings have important properties

- for any α, β, exactly one of the following holds

$$
\alpha<\beta \quad \text { or } \quad \alpha=\beta \quad \text { or } \quad \alpha>\beta
$$

- if $x^{\alpha}<x^{\beta}$ then $x^{\gamma} x^{\alpha}<x^{\gamma} x^{\beta}$ for all $\gamma \in \mathbb{N}^{n}$
- $\alpha \geq 0$ for all $\alpha \in \mathbb{N}^{n}$

notation

ordering the terms in a polynomial

$$
f=-5 x^{3} y+7 x^{2} y^{2}+3 x^{2} y+4 x y^{2} z+4 y z^{2}
$$

defines

- the leading term $\operatorname{lt}(f)=-5 x^{3} y$ leading coefficient $\operatorname{lc}(f)=-5$ leading monomial $\operatorname{lm}(f)=x^{3} y$
- we say f has multidegree multideg $(f)=(3,1,0)$
- if f and g are nonzero then

$$
\operatorname{multideg}(f g)=\operatorname{multideg}(f)+\operatorname{multideg}(g)
$$

multivariable division

now we have an ordering, we can do division, for example
using lex order, with $y<x$,

$$
\begin{gathered}
x-y \\
x^{2} y+x y^{2}+1 \begin{array}{|c|c|}
x^{3} y+x y^{2}+1 \\
x^{3} y+x^{2} y^{2}+x \\
-x^{2} y^{2}+x y^{2}-x+1 \\
-x^{2} y^{2}-\frac{x y^{3}-y}{x y^{3}+x y^{2}-x+y+1}
\end{array} \\
q=x-y \quad r=x y^{3}+x y^{2}-x+y+1
\end{gathered}
$$

order dependence
but the result depends on the monomial ordering
same example as before, using lex order, with $x<y$,

$$
\begin{gathered}
1 \\
y^{2} x+y x^{2}+1 \begin{array}{|c}
y^{2} x+y x^{3}+1 \\
y^{2} x+\frac{y x^{2}+1}{y x^{3}-y x^{2}} \\
q=1
\end{array} r=y x^{3}-y x^{2}
\end{gathered}
$$

stopping criterion

in division of scalar polynomials, the algorithm halts if $\operatorname{lt}(g)$ does not divide $\operatorname{lt}(r)$;

$$
\begin{gathered}
x^{2} \\
x y ^ { 2 } + 1 \longdiv { x ^ { 3 } y ^ { 2 } + x ^ { 2 } y + x ^ { 2 } + x y ^ { 2 } } \\
x^{3} y^{2}+x^{2} \\
x^{2} y+x y^{2}
\end{gathered}
$$

at this point, the remainder $r=x^{2} y+x y^{2}$
even though $\operatorname{lt}(r)$ is not divisible by $\operatorname{lt}(g)$, the second term in r is
so we can continue, if we ignore the leading term of r

stopping criterion

keep track of ignored remainders, and continue dividing

$$
\begin{gathered}
x^{2}+1 \\
x y ^ { 2 } + 1 \longdiv { x ^ { 3 } y ^ { 2 } + x ^ { 2 } y + x ^ { 2 } + x y ^ { 2 } } \\
x^{3} y^{2}+x^{2} \\
\begin{array}{l}
x^{2} y+x y^{2} \\
x y^{2} \\
\frac{x y^{2}+1}{-1}
\end{array}
\end{gathered}
$$

lt does not divide by $\operatorname{lt}(g)$ $\longrightarrow x^{2} y$ remainder

$$
\begin{equation*}
\longrightarrow x^{2} y-1 \tag{0}
\end{equation*}
$$

the algorithm halts when no term in the remainder is divisible by $\operatorname{lt}(g)$

multiple divisors

we can divide f by multiple polynomials g_{1}, \ldots, g_{m} to find quotients q_{1}, \ldots, q_{m} and remainder r such that $f=q_{1} g_{1}+\cdots+q_{m} g_{m}+r$

$$
\begin{aligned}
& q_{1}: x+y \\
& q_{2}: 1 \\
& \begin{array} { r }
{ x y - 1 } \\
{ y ^ { 2 } - 1 }
\end{array} \longdiv { x ^ { 2 } y + x y ^ { 2 } } + y ^ { 2 } \\
& x^{2} y \quad-x \\
& x y^{2}+x+y^{2} \\
& x y^{2} \frac{-y}{x+} y^{2}-y \\
& y^{2}-y \\
& \frac{y^{2}-1}{y+1} \\
& 0 \quad \longrightarrow x+y+1 \text { rem } \\
& \text { divides by } g_{1} \\
& \text { divides by } g_{1} \\
& \longrightarrow x \text { rem, then divide by } g_{2} \\
& \longrightarrow x+y+1 \text { rem }
\end{aligned}
$$

division algorithm

the algorithm is

$$
\begin{aligned}
& q_{1}=0 ; \ldots q_{m}=0 ; \\
& r=0 ; p=f \\
& \text { while } p \neq 0
\end{aligned}
$$

let i be the smallest i such that $\operatorname{lt}\left(g_{i}\right)$ divides $\operatorname{lt}(p)$ if such i exists

$$
\begin{aligned}
q_{i} & =q_{i}+\operatorname{lt}(p) / \operatorname{lt}\left(g_{i}\right) \\
p & =p-g_{i} \operatorname{lt}(r) / \operatorname{lt}\left(g_{i}\right)
\end{aligned}
$$

else

$$
\begin{aligned}
& r=r+\operatorname{lt}(p) \\
& p=p-\operatorname{lt}(p)
\end{aligned}
$$

division algorithm

the division algorithm works because

- after every pass through the loop, we have

$$
f=q_{1} g_{1}+\cdots+q_{m} g_{m}+r+p
$$

- we update p every time we pass through the loop, and each time its multidegree drops (relative to the monomial ordering)

division theorem

suppose $f, g_{1}, \ldots, g_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$;
there exist $r, q_{1}, \ldots, q_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
f=q_{1} g_{1}+\cdots+q_{m} g_{m}+r
$$

and either

- $r=0$ or
- none of the monomials of r divide by any of $\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)$
also, multideg $\left(q_{i} g_{i}\right) \leq \operatorname{multideg}(f)$ w.r.t. the monomial order
nonuniqueness
there is no uniqueness; both quotients and remainder may change, if we
- reorder the g_{i} polynomials
- change the monomial ordering

example

dividing $f=x^{2} y+x y^{2}+y^{2}$ by

$$
g_{1}=x y-1, \quad g_{2}=y^{2}-1
$$

gives $f=(x+y)(x y-1)+\left(y^{2}-1\right)+(x+y+1)$

Reversing the order of the g_{i} 's gives

$$
f=x(x y-1)+(x+1)\left(y^{2}-1\right)+(2 x+1)
$$

testing ideal membership

if the remainder on division is zero, then we have

$$
f \in \operatorname{ideal}\left\{g_{1}, \ldots, g_{m}\right\}
$$

but the converse is not true
example

$$
f=x y^{2}-x, \quad g_{1}=x y+1, \quad g_{2}=y^{2}-1
$$

division gives $q_{1}=y, q_{2}=0$, and $r=-x-y$
but we have $f=x g_{2}$ so clearly $f \in \operatorname{ideal}\left\{g_{1}, g_{2}\right\}$

testing ideal membership

we would like to test if

$$
f \in \operatorname{ideal}\left\{g_{1}, \ldots, g_{m}\right\}
$$

the division algorithm stops when all terms of the remainder are not divisible by any $\operatorname{lt}\left(g_{i}\right)$
for example, if

$$
g_{1}=x^{2}-y \quad g_{2}=x^{2}-z
$$

in lex order $z<y<x$, then the leading x^{2} terms mask information about terms in y and z; e.g., $y-z \in \operatorname{ideal}\left\{g_{1}, g_{2}\right\}$ but does not divide by g_{1}, g_{2}
this suggests picking a basis h_{1}, \ldots, h_{s} of the ideal where the $\operatorname{lt}\left(h_{i}\right)$ terms contain enough information to specify the ideal

monomial ideals

an ideal $I \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is called a monomial ideal if it is generated by a set of monomials $W \subset \mathbb{N}^{n}$

$$
I=\operatorname{ideal}\left\{x^{\alpha} \mid \alpha \in W\right\}
$$

monomial ideals

suppose I is the monomial ideal $I=\operatorname{ideal}\left\{x^{\alpha} \mid \alpha \in W\right\}$; then

$$
x^{\beta} \in I \quad \Longrightarrow \quad x^{\beta}=x^{\gamma} x^{\alpha} \text { for some } \alpha \in W
$$

proof; since $x^{\beta} \in I$, we have

$$
x^{\beta}=\sum_{i=1}^{m} h_{i} x^{\alpha(i)} \quad \text { where } \alpha(1), \ldots, \alpha(m) \in W
$$

every term on the RHS has the property that there exists some i such that $x^{\alpha(i)}$ divides it
so every term on the LHS does also; but there is only one term on the LHS

monomial ideals

a similar argument, expanding f in terms of the generators, shows

$$
f \in I \text { if and only if every term of } f \text { is in } I
$$

and this then implies

> two monomial ideals are the same if and only if they contain the same monomials

monomial ideals

monomial ideals are defined by the monomials they contain; e.g.

$$
I=\operatorname{ideal}\left\{x^{4} y^{2}, x^{3} y^{4}, x^{2} y^{5}\right\}
$$

we can plot these in \mathbb{N}^{n}

the picture should convince you of Dickson's Lemma

Every monomial ideal is finitely generated
the Hilbert basis theorem

Every ideal in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated

- we know that ideal $\left\{f_{1}, \ldots, f_{m}\right\}$ is finitely generated
- but what about $\mathcal{I}(S)$ when S is a variety?

the Hilbert basis theorem

to see this, suppose I is an ideal; then

$$
\text { ideal }\{\operatorname{lt}(I)\} \text { is a monomial ideal }
$$

so it is finite generated by some monomials w_{1}, \ldots, w_{m}
these monomials are in ideal $\{\operatorname{lt}(I)\}$ since they are generators for it
we can also choose them in $\operatorname{lt}(I)$, by the proof of Dickson's Lemma
since they are in $\operatorname{lt}(I)$, they are the leading terms of some elements of I, say g_{1}, \ldots, g_{m}

proof continued

so far, we have $\operatorname{ideal}\{\operatorname{lt}(I)\}$ is finitely generated by the leading terms of some $g_{i} \in I$

$$
\text { ideal }\{\operatorname{lt}(I)\}=\operatorname{ideal}\left\{\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)\right\}
$$

we'll show $I=\operatorname{ideal}\left\{g_{1}, \ldots, g_{m}\right\}$
suppose $f \in I$, then division gives

$$
f=q_{1} g_{1}+\ldots q_{m} g_{m}+r
$$

if $r \neq 0$ we have a contradiction, since $r \in I$, hence

$$
\operatorname{lt}(r) \in \operatorname{lt}(I) \subset \operatorname{ideal}\left\{\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)\right\}
$$

hence $\operatorname{lt}(r)$ is divisible by some $\operatorname{lt}\left(g_{i}\right)$; contradicting the division theorem

consequences of the Hilbert basis theorem

$g_{1}, \ldots, g_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ are called a Groebner basis for I if

$$
\operatorname{ideal}\{\operatorname{lt}(I)\}=\operatorname{ideal}\left\{\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)\right\}
$$

the Hilbert basis theorem gives a condition for ideal membership

$$
f \in I \quad \Longleftrightarrow \quad \text { remainder } r=0 \text { when dividing } f \text { by } g_{1}, \ldots, g_{m}
$$

so far, we do not know how to construct a Groebner basis

properties of Groebner bases

- $I=\operatorname{ideal}\left\{g_{1}, \ldots, g_{m}\right\}$
- whether g_{1}, \ldots, g_{m} is a Groebner basis for I depends on the monomial ordering
- for any $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the remainder on division by g_{1}, \ldots, g_{m} is independent of how we order the g_{i}
but we have to use the same monomial ordering in the division and the quotients may change under reordering of g_{i}
- proof of the HB theorem showed that a Groebner basis always exists

consequences of the Hilbert basis theorem

an important consequence is
every variety $S \subset \mathbb{R}^{n}$ is the feasible set of
a finite set of polynomial equations
because if $S=\mathcal{V}(P)$, for some possibly infinite set $P \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$
then $\mathcal{V}(\mathcal{I}(S))=S$ since S is a variety and $\mathcal{I}(S)$ is finitely generated, so there exists f_{1}, \ldots, f_{m} such that

$$
\mathcal{V}\left(\text { ideal }\left\{f_{1}, \ldots, f_{m}\right\}\right)=S
$$

and $\mathcal{V}\left(\right.$ ideal $\left.\left\{f_{1}, \ldots, f_{m}\right\}\right)=\mathcal{V}\left(f_{1}, \ldots, f_{m}\right)$

