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Ideal membership and division

We have seen that testing feasibility of a set of polynomial equations over Cn
can be solved if we can test ideal membership.

given f, g1, . . . , gm ∈ C[x1, . . . , xn], is it true that

f ∈ ideal{g1, . . . , gm}

I We would like to divide the polynomial f by the gi, that is, find quotients
q1, . . . , qm and remainder r such that

f = q1g1 + · · ·+ qmgm + r

I Clearly, if r = 0 then f ∈ ideal{g1, . . . , gm}.

I The converse is not true unless we use a special generating set for the ideal,
called a Groebner basis.
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monomials

A monomial xα is defined by a point α ∈ Nn; e.g.,

α = (1, 0, 2) =⇒ xα = x1x
2
3

in the scalar division algorithm, we repeatedly subtract a multiple of the divisor
g from f

I the multiple is chosen to cancel the leading term

I the algorithm stops when the remainder is as small as possible

we need to specify an ordering on monomials for both of these steps

e.g., if f = x2 and g = x2 − y2, then

f = 0 g + x2 and f = 1 g + y2

which is the smaller remainder?

note orderings are also important in Gaussian elimination
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lex order

in lexicographic order, define α < β if the leftmost non-zero entry of β − α is
positive; e.g.,

(1, 0, 0) < (2, 0, 0) x < x2

(1, 2, 0) < (1, 2, 1) xy < xyz

(0, 1, 0) < (8, 0, 0) y < x8

(0, 8, 0) < (1, 0, 0) y8 < x

called lexicographic after dictionary ordering; think of αi as letters

the order depends on the ordering of the variables

in a polynomial, order the terms in decreasing order

f = −5x3y︸ ︷︷ ︸
x3

+7x2y2 + 3x2y︸ ︷︷ ︸
x2

+4xy2z︸ ︷︷ ︸
x1

+4yz2︸︷︷︸
x0
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grlex order

in graded lexicographic order, define α < β if

|α| < |β| or |α| = |β| and α <lex β

i.e., smallest degree always comes first; break ties using lex order

f = −5x3y + 7x2y2 + 4xy2z + 3x2y + 4yz2
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order properties

both of these orderings have important properties

I for any α, β, exactly one of the following holds

α < β or α = β or α > β

I if xα < xβ then xγxα < xγxβ for all γ ∈ Nn

I α ≥ 0 for all α ∈ Nn
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notation

ordering the terms in a polynomial

f = −5x3y + 7x2y2 + 3x2y + 4xy2z + 4yz2

defines

I the leading term lt(f) = −5x3y
leading coefficient lc(f) = −5
leading monomial lm(f) = x3y

I we say f has multidegree multideg(f) = (3, 1, 0)

I if f and g are nonzero then

multideg(fg) = multideg(f) + multideg(g)
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multivariable division

now we have an ordering, we can do division, for example

using lex order, with y < x,

x− y

x2y + xy2 + 1 x3y + xy2 + 1

x3y + x2y2 + x

−x2y2 + xy2 − x+ 1

−x2y2− xy3 − y

xy3 + xy2− x+ y + 1

q = x− y r = xy3 + xy2 − x+ y + 1



9

order dependence

but the result depends on the monomial ordering

same example as before, using lex order, with x < y,

1

y2x+ yx2 + 1 y2x+ yx3 + 1

y2x+ yx2 + 1

yx3 − yx2

q = 1 r = yx3 − yx2
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stopping criterion

in division of scalar polynomials, the algorithm halts if lt(g) does not divide lt(r);

x2

xy2 + 1 x3y2 + x2y + x2 + xy2

x3y2 + x2

x2y + xy2

at this point, the remainder r = x2y + xy2

even though lt(r) is not divisible by lt(g), the second term in r is

so we can continue, if we ignore the leading term of r
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stopping criterion

keep track of ignored remainders, and continue dividing

x2 + 1

xy2 + 1 x3y2 + x2y + x2 + xy2

x3y2 + x2

x2y + xy2 lt does not divide by lt(g)

xy2 −→ x2y remainder
xy2 + 1

− 1

0 −→ x2y − 1

the algorithm halts when no term in the remainder is divisible by lt(g)
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multiple divisors

we can divide f by multiple polynomials g1, . . . , gm to find quotients q1, . . . , qm
and remainder r such that f = q1g1 + · · ·+ qmgm + r

q1 : x+ y
q2 : 1

xy − 1

y2 − 1
x2y + xy2 + y2 divides by g1

x2y −x

xy2+x+ y2 divides by g1
xy2 −y

x+ y2 − y
y2 − y −→ x rem, then divide by g2
y2 − 1
y + 1

0 −→ x+ y + 1 rem
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division algorithm

the algorithm is

q1 = 0; . . . qm = 0;

r = 0; p = f ;

while p 6= 0

let i be the smallest i such that lt(gi) divides lt(p)

if such i exists

qi = qi + lt(p)/ lt(gi)

p = p− gi lt(r)/ lt(gi)
else

r = r + lt(p)

p = p− lt(p)
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division algorithm

the division algorithm works because

I after every pass through the loop, we have

f = q1g1 + · · ·+ qmgm + r + p

I we update p every time we pass through the loop, and each time its multi-
degree drops (relative to the monomial ordering)
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division theorem

suppose f, g1, . . . , gm ∈ K[x1, . . . , xn];

there exist r, q1, . . . , qm ∈ K[x1, . . . , xn] such that

f = q1g1 + · · ·+ qmgm + r

and either

I r = 0 or

I none of the monomials of r divide by any of lt(g1), . . . , lt(gm)

also, multideg(qigi) ≤ multideg(f) w.r.t. the monomial order
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nonuniqueness

there is no uniqueness; both quotients and remainder may change, if we

I reorder the gi polynomials

I change the monomial ordering

example

dividing f = x2y + xy2 + y2 by

g1 = xy − 1, g2 = y2 − 1

gives f = (x+ y)(xy − 1) + (y2 − 1) + (x+ y + 1)

Reversing the order of the gi’s gives

f = x(xy − 1) + (x+ 1)(y2 − 1) + (2x+ 1)
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testing ideal membership

if the remainder on division is zero, then we have

f ∈ ideal{g1, . . . , gm}

but the converse is not true

example
f = xy2 − x, g1 = xy + 1, g2 = y2 − 1

division gives q1 = y, q2 = 0, and r = −x− y

but we have f = xg2 so clearly f ∈ ideal{g1, g2}
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testing ideal membership

we would like to test if
f ∈ ideal{g1, . . . , gm}

the division algorithm stops when all terms of the remainder are not divisible by
any lt(gi)

for example, if
g1 = x2 − y g2 = x2 − z

in lex order z < y < x, then the leading x2 terms mask information about terms
in y and z; e.g., y − z ∈ ideal{g1, g2} but does not divide by g1, g2

this suggests picking a basis h1, . . . , hs of the ideal where the lt(hi) terms contain
enough information to specify the ideal
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monomial ideals

an ideal I ⊂ K[x1, . . . , xn] is called a monomial ideal if it is generated by a set
of monomials W ⊂ Nn

I = ideal{xα | α ∈W }
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monomial ideals

suppose I is the monomial ideal I = ideal{xα | α ∈W }; then

xβ ∈ I =⇒ xβ = xγxα for some α ∈W

proof; since xβ ∈ I, we have

xβ =

m∑
i=1

hix
α(i) where α(1), . . . , α(m) ∈W

every term on the RHS has the property that

there exists some i such that xα(i) divides it

so every term on the LHS does also; but there is only one term on the LHS
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monomial ideals

a similar argument, expanding f in terms of the generators, shows

f ∈ I if and only if every term of f is in I

and this then implies

two monomial ideals are the same if and only if

they contain the same monomials
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monomial ideals

monomial ideals are defined by the
monomials they contain; e.g.

I = ideal{x4y2, x3y4, x2y5}

we can plot these in Nn

the picture should convince you of Dickson’s Lemma

Every monomial ideal is finitely generated
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the Hilbert basis theorem

Every ideal in K[x1, . . . , xn] is finitely generated

I we know that ideal{f1, . . . , fm} is finitely generated

I but what about I(S) when S is a variety?
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the Hilbert basis theorem

to see this, suppose I is an ideal; then

ideal{lt(I)} is a monomial ideal

so it is finite generated by some monomials w1, . . . , wm

these monomials are in ideal{lt(I)} since they are generators for it

we can also choose them in lt(I), by the proof of Dickson’s Lemma

since they are in lt(I), they are the leading terms of some elements of I, say
g1, . . . , gm



25

proof continued

so far, we have ideal{lt(I)} is finitely generated by the leading terms of some
gi ∈ I

ideal{lt(I)} = ideal{lt(g1), . . . , lt(gm)}

we’ll show I = ideal{g1, . . . , gm}

suppose f ∈ I, then division gives

f = q1g1 + . . . qmgm + r

if r 6= 0 we have a contradiction, since r ∈ I, hence

lt(r) ∈ lt(I) ⊂ ideal{lt(g1), . . . , lt(gm)}

hence lt(r) is divisible by some lt(gi); contradicting the division theorem
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consequences of the Hilbert basis theorem

g1, . . . , gm ∈ K[x1, . . . , xn] are called a Groebner basis for I if

ideal{lt(I)} = ideal{lt(g1), . . . , lt(gm)}

the Hilbert basis theorem gives a condition for ideal membership

f ∈ I ⇐⇒ remainder r = 0 when dividing f by g1, . . . , gm

so far, we do not know how to construct a Groebner basis



27

properties of Groebner bases

I I = ideal{g1, . . . , gm}

I whether g1, . . . , gm is a Groebner basis for I depends on the monomial
ordering

I for any f ∈ K[x1, . . . , xn] the remainder on division by g1, . . . , gm is inde-
pendent of how we order the gi

but we have to use the same monomial ordering in the division

and the quotients may change under reordering of gi

I proof of the HB theorem showed that a Groebner basis always exists



28

consequences of the Hilbert basis theorem

an important consequence is

every variety S ⊂ Rn is the feasible set of

a finite set of polynomial equations

because if S = V(P ), for some possibly infinite set P ⊂ K[x1, . . . , xn]

then V(I(S)) = S since S is a variety and I(S) is finitely generated, so there
exists f1, . . . , fm such that

V(ideal{f1, . . . , fm}) = S

and V(ideal{f1, . . . , fm}) = V(f1, . . . , fm)


