EE464: Lecture 1

- ee464: semidefinite optimization and algebraic techniques
- Sanjay Lall

Requirements and prerequisites

- class attendance
- a few homeworks
- no exams
- prereqisities:
 - linear algebra (ee263 at least)
 - convex optimization (ee364a)
 - mathematical maturity

Course overview

- research-oriented class
- convex optimization
- algebraic geometry
 - polynomial equations and inequalities
- focused on the tools, not a specific set of applications
- ideas from the last 10 years

Topics covered

• optimization:

semidefinite programming; quadratic programming and SDP relaxations; applications

• polynomial programming:

constructing dual problems via semidefinite programming; valid inequalities, and positive cones of real polynomials; introduction to algebraic geometry; formal theory of the reals

• algebra and geometry:

the correspondence between ideals and varieties; Nullstellensatz and its interpretation via duality and certificates; computation via linear algebra and Groebner bases

• sum-of-squares decomposition:

efficient computation via semidefinite programming; duality of the SOS decomposition via Schur complements, moments, and liftings

• semialgebraic sets:

cones, monoids and ideals; quantifier elimination; computation of positivstellensatz certificates using semidefinite programming; exploiting structure, sparseness, symmetry, quotient rings

References

- a new course
- we may post references instead of notes
- current research with many sources
- some material from
 - forthcoming book: Semidefinite Optimization and Convex Algebraic Geometry by Blekherman, Parrilo and Thomas
 - workshop notes by Lall and Parrilo