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Interpretations

• So far, we have seen how to compute certificates of polynomial nonnegativity

• As we will see, these are dual SDP relaxations

• We can also interpret the corresponding primal SDPs

• These arise through liftings
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A General Method: Liftings

Consider this polytope in R3 (a zonotope).
It has 56 facets, and 58 vertices.

Optimizing a linear function over this set, requires a
linear program with 56 constraints (one per face).

However, this polyhedron is a three-dimensional
projection of the 8-dimensional hypercube {x ∈
R8,−1 ≤ xi ≤ 1}.

Therefore, by using additional variables, we can solve
the same problem, by using an LP with only 16 con-
straints.
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Liftings

By going to higher dimensional representations, things may become easier:

• “Complicated” sets can be the projection of much simpler ones.

• A polyhedron in Rn with a “small” number of faces can project to a lower dimensional
space with exponentially many faces.

• Basic semialgebraic sets can project into non-basic semialgebraic sets.

• Feasible sets of SDPs may project to non-spectrahedral sets.

An essential technique in integer programming.

Advantages: compact representations, avoiding “case distinctions,” etc.
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Example

minimize (x− 3)2

subject to x (x− 4) ≥ 0

The feasible set is [−∞, 0] ∪ [4,∞]. Not convex, or even connected.

Consider the lifting L : R→ R2, with L(x) = (x, x2) =: (x, y).

Rewrite the problem in terms of the lifted variables.

• For every lifted point,

[
1 x
x y

]
� 0.

• Constraint becomes: y − 4x ≥ 0

• Objective is now: y − 6x + 9

We “get around” nonconvexity: interior points are now on the boundary.
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Quadratically Constrained Quadratic Programming

A general QCQP is

minimize

[
1
x

]T
Q

[
1
x

]

subject to

[
1
x

]T
Ai

[
1
x

]
= 0 for all i = 1, . . . ,m

The Lagrangian is

L(x, λ) =

[
1
x

]T (
Q−

m∑
i=1

λiAi

)[
1
x

]T
so the dual feasible set is defined by semidefinite constraints
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QCQP Dual

The dual is the SDP

maximize t

subject to Q−
m∑
i=1

λiAi � t

[
1 0
0 0

]

and the dual of the dual is

minimize trQY

subject to trAiY = 0 for all i = 1, . . . ,m

Y � 0

Y11 = 1
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Lifting

Lifting is a general approach for constructing primal relaxations; the idea is

• Introduce new variables Y which are polynomial in x
This embeds the problem in a higher dimensional space

• Write valid inequalities in the new variables

• The feasible set of the original problem is the projection of the lifted feasible set
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Lifting QCQP

We have the QCQP

minimize

[
1
x

]T
Q

[
1
x

]

subject to

[
1
x

]T
Ai

[
1
x

]
= 0 for all i = 1, . . . ,m

Use lifted variables Y ∈ Sn, defined by Y =

[
1
x

] [
1
x

]T

We have valid constraints

Y � 0, Y11 = 1, rankY = 1

Every such Y corresponds to a unique x
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Lifted QCQP

The lifted problem is

minimize trQY

subject to trAiY = 0 for all i = 1, . . . ,m

Y � 0

Y11 = 1

rankY = 1

Again, we can drop the non-convex constraint to obtain a relaxation

This (happens to) give the same as the dual of the dual
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QCQP Interpretation of Polynomial Programs

We can also lift polynomial programs; consider the example

minimize
6∑

k=0

akx
k

We’ll choose lifted variables

y =

 xx2
x3


then the cost function is

f = a0 + a1y1 + a2y2 + a3y3 + a4y1y3 + a5y2y3 + a6y
2
3

a quadratic function of y (many other choices possible)
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QCQP Interpretation of Polynomial Programs

We have the equivalent QCQP

minimize


1

y1

y2

y3


T 

a0
a1
2

a2
2

a3
2

0 0 a4
2

0 a5
2

a6




1

y1

y2

y3


subject to y2 − y21 = 0

y3 − y1y2 = 0

to make the Lagrange dual tighter, we can add the valid constraint

y22 − y1y3 = 0

Every polynomial program can be expressed as an equivalent QCQP
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Quadratic Constraints

The above quadratic constraints are
1
y1
y2
y3


T 

0 0 0 0
0 0 0 −1
0 0 2 0
0 −1 0 0



1
y1
y2
y3

 = 0


1
y1
y2
y3


T 

0 0 −1 0
0 2 0 0
−1 0 0 0
0 0 0 0



1
y1
y2
y3

 = 0


1
y1
y2
y3


T 

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



1
y1
y2
y3

 = 0
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Relaxations

We can now construct the SDP primal and dual relaxations of this QCQP

Example

Suppose f = x6 + 4x2 + 1, then the SDP dual relaxation is

maximize t

subject to


1− t 0 2 + λ2 −λ3
0 −2λ2 λ3 λ1

2 + λ2 λ3 −2λ1 0
−λ3 λ1 0 1

 � 0

this is exactly the condition that f − t be sum of squares
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The Primal Relaxation of a Polynomial Program

Since we have a QCQP, there is also an SDP primal relaxation, constructed via the lifting

Y =

[
1
y

] [
1
y

]T
It is the SDP

minimize tr


a0

a1
2

a2
2

a3
2

0 0 a4
2

0 a5
2

a6

Y

subject to Y � 0

Y11 = 1 Y24 = Y33

Y22 = Y13 Y14 = Y23
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The Primal Relaxation of a Polynomial Program

This is constructed by

Y =

[
1
y

] [
1
y

]T
=


1
x
x2

x3



1
x
x2

x3


T

=


1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6



• One may construct this directly from the polynomial program

• Direct extensions to the multivariable case

• The feasible set of Y may be projected to give a feasible set of x

• If the optimal Y has rankY = 1 then the relaxation is exact
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Lifting

Higher dimensional representations have several possible advantages

• One may find simpler representations, e.g., polytopes

• Basic semialgebraic sets may project to non-basic ones

• Adding new variables via lifting allows new valid inequalities, which tightens the dual

• Using polynomial lifting allows more constraints to be represented in LP or SDP form

• Lifting wraps the feasible set onto a higher dimensional variety; this tends to map
interior points to boundary points
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Outer Approximation of Semialgebraic Sets

The primal SDP relaxation allows us to construct outer approximation of a semialgebraic
set

For example, one can compute an outer approximation of the epigraph

S =
{
(x1, x2)

∣∣ x2 ≥ f (x1)
}

In one variable, the SDP relaxation gives exactly the convex hull, since S is contained in
a halfspace {

x ∈ R2 | aTx ≤ b
}

if and only if the following polynomial inequality holds

a1x + a2f (x) ≤ b for all x
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Example: Outer Approximation of the Epigraph

Let’s look at the univariate example

f =
1

2
(x− 1)(x− 2)(x− 3)(x− 5)

If y ≥ f (x) then the following SDP is feasible

y ≥ 1

4
tr

 60 −61 41
−61 0 −11
41 −11 2

X
X � 0

X22 = 2X12 X11 = 1

X12 = x



20

Moments Interpretation of the Primal Relaxation

Instead of trying to minimize directly f , we can solve

minimize E f =

∫
Rn
f (x)p(x) dx

subject to p is a probability distribution on Rn

• This is a dual problem to minimizing f

• If f has a unique minimum at x0, then the optimal will be a point measure at x0

• Essentially due to Lasserre
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Moments Interpretation of the Primal Relaxation

suppose y =
[
1 x y xy x2 . . .

]T
, then f = cTy and

E f = cT E y

E y is the vector of moments of the distribution

so we have the equivalent problem

minimize cTz

subject to z is a vector of moments of y
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Example

Since E yyT � 0 for any distribution, we have valid inequalities

E

1x
y

1x
y

T = E

1 x y
x x2 xy
y xy y2

 � 0

so to find a lower bound x2 + 2xy + 3y2 we solve the SDP

minimize
[
1 2 3

]
z

subject to M � 0

z1 =M22, z2 =M12, z3 =M22

• This is exactly the primal SDP relaxation; the dual of SOS

• Similar to MAXCUT, where the SDP relaxation may be viewed as a covariance matrix
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A General Scheme

Dual SDP Relaxation
Sum of Squares

SDP
Duality

Lagrangian
Relaxation

QCQP

Primal SDP Relaxation
Moments

Lifting
and

Relaxation

Polynomial Program

Lifting
and Valid

Constraints
y =

x

x2

x3
.
.
.

2

6

4

3

7

5

Y =
1

y

ô õ

1

y

ô õT

• Primal: the solution to the lifted problem may suggest candidate points where the
polynomial is negative.

• Dual: the sum of squares certifies or proves polynomial nonnegativity.


