EE464: Lifting

Interpretations

- So far, we have seen how to compute certificates of polynomial nonnegativity
- As we will see, these are dual SDP relaxations
- We can also interpret the corresponding primal SDPs
- These arise through liftings

A General Method: Liftings

Consider this polytope in \mathbb{R}^{3} (a zonotope).
It has 56 facets, and 58 vertices.
Optimizing a linear function over this set, requires a linear program with 56 constraints (one per face).

However, this polyhedron is a three-dimensional projection of the 8-dimensional hypercube $\{x \in$ $\left.\mathbb{R}^{8},-1 \leq x_{i} \leq 1\right\}$.

Therefore, by using additional variables, we can solve the same problem, by using an LP with only 16 constraints.

Liftings

By going to higher dimensional representations, things may become easier:

- "Complicated" sets can be the projection of much simpler ones.
- A polyhedron in \mathbb{R}^{n} with a "small" number of faces can project to a lower dimensional space with exponentially many faces.
- Basic semialgebraic sets can project into non-basic semialgebraic sets.
- Feasible sets of SDPs may project to non-spectrahedral sets.

An essential technique in integer programming.

Advantages: compact representations, avoiding "case distinctions," etc.

Example

$$
\begin{aligned}
\operatorname{minimize} & (x-3)^{2} \\
\text { subject to } & x(x-4) \geq 0
\end{aligned}
$$

The feasible set is $[-\infty, 0] \cup[4, \infty]$. Not convex, or even connected.
Consider the lifting $L: \mathbb{R} \rightarrow \mathbb{R}^{2}$, with $L(x)=\left(x, x^{2}\right)=:(x, y)$.
Rewrite the problem in terms of the lifted variables.

- For every lifted point, $\left[\begin{array}{ll}1 & x \\ x & y\end{array}\right] \succeq 0$.
- Constraint becomes: $y-4 x \geq 0$
- Objective is now: $y-6 x+9$

Quadratically Constrained Quadratic Programming

A general QCQP is

$$
\begin{aligned}
\text { minimize } & {\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Q\left[\begin{array}{l}
1 \\
x
\end{array}\right] } \\
\text { subject to } & {\left[\begin{array}{c}
1 \\
x
\end{array}\right]^{T} A_{i}\left[\begin{array}{c}
1 \\
x
\end{array}\right]=0 \quad \text { for all } i=1, \ldots, m }
\end{aligned}
$$

The Lagrangian is

$$
L(x, \lambda)=\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T}\left(Q-\sum_{i=1}^{m} \lambda_{i} A_{i}\right)\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T}
$$

so the dual feasible set is defined by semidefinite constraints

QCQP Dual

The dual is the SDP

$$
\begin{array}{cl}
\operatorname{maximize} & t \\
\text { subject to } & Q-\sum_{i=1}^{m} \lambda_{i} A_{i} \succeq t\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
\end{array}
$$

and the dual of the dual is

minimize	$\operatorname{tr} Q Y$
subject to	$\operatorname{tr} A_{i} Y=0 \quad$ for all $i=1, \ldots, m$
	$Y \succeq 0$
	$Y_{11}=1$

Lifting

Lifting is a general approach for constructing primal relaxations; the idea is

- Introduce new variables Y which are polynomial in x

This embeds the problem in a higher dimensional space

- Write valid inequalities in the new variables
- The feasible set of the original problem is the projection of the lifted feasible set

Lifting QCQP

We have the QCQP

$$
\begin{aligned}
\text { minimize } & {\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Q\left[\begin{array}{l}
1 \\
x
\end{array}\right] } \\
\text { subject to } & {\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} A_{i}\left[\begin{array}{l}
1 \\
x
\end{array}\right]=0 \quad \text { for all } i=1, \ldots, m }
\end{aligned}
$$

Use lifted variables $Y \in \mathbb{S}^{n}$, defined by $Y=\left[\begin{array}{l}1 \\ x\end{array}\right]\left[\begin{array}{c}1 \\ x\end{array}\right]^{T}$

We have valid constraints

$$
Y \succeq 0, \quad Y_{11}=1, \quad \operatorname{rank} Y=1
$$

Every such Y corresponds to a unique x

Lifted QCQP

The lifted problem is

$$
\begin{aligned}
\operatorname{minimize} & \operatorname{tr} Q Y \\
\text { subject to } & \operatorname{tr} A_{i} Y=0 \quad \text { for all } i=1, \ldots, m \\
& Y \succeq 0 \\
& Y_{11}=1 \\
& \operatorname{rank} Y=1
\end{aligned}
$$

Again, we can drop the non-convex constraint to obtain a relaxation This (happens to) give the same as the dual of the dual

QCQP Interpretation of Polynomial Programs

We can also lift polynomial programs; consider the example

$$
\operatorname{minimize} \quad \sum_{k=0}^{6} a_{k} x^{k}
$$

We'll choose lifted variables

$$
y=\left[\begin{array}{c}
x \\
x^{2} \\
x^{3}
\end{array}\right]
$$

then the cost function is

$$
f=a_{0}+a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}+a_{4} y_{1} y_{3}+a_{5} y_{2} y_{3}+a_{6} y_{3}^{2}
$$

a quadratic function of y (many other choices possible)

QCQP Interpretation of Polynomial Programs

We have the equivalent QCQP

$$
\begin{array}{ll}
\text { minimize } & {\left[\begin{array}{l}
1 \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]^{T}\left[\begin{array}{rrrc}
a_{0} & \frac{a_{1}}{2} & \frac{a_{2}}{2} & \frac{a_{3}}{2} \\
& 0 & 0 & \frac{a_{4}}{2} \\
& & 0 & \frac{a_{5}}{2} \\
& & a_{6}
\end{array}\right]\left[\begin{array}{l}
1 \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]} \\
\text { subject to } \quad y_{2}-y_{1}^{2}=0 \\
& y_{3}-y_{1} y_{2}=0
\end{array}
$$

to make the Lagrange dual tighter, we can add the valid constraint

$$
y_{2}^{2}-y_{1} y_{3}=0
$$

Every polynomial program can be expressed as an equivalent QCQP

Quadratic Constraints

The above quadratic constraints are

$$
\begin{aligned}
& {\left[\begin{array}{c}
1 \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]^{T}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 2 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=0} \\
& {\left[\begin{array}{c}
1 \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]^{T}\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 2 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=0} \\
& {\left[\begin{array}{c}
1 \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]^{T}\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=0}
\end{aligned}
$$

Relaxations

We can now construct the SDP primal and dual relaxations of this QCQP

Example

Suppose $f=x^{6}+4 x^{2}+1$, then the SDP dual relaxation is

$$
\begin{array}{ll}
\text { maximize } & t \\
\text { subject to } & {\left[\begin{array}{cccc}
1-t & 0 & 2+\lambda_{2}-\lambda_{3} \\
0 & -2 \lambda_{2} & \lambda_{3} & \lambda_{1} \\
2+\lambda_{2} & \lambda_{3} & -2 \lambda_{1} & 0 \\
-\lambda_{3} & \lambda_{1} & 0 & 1
\end{array}\right] \succeq 0}
\end{array}
$$

this is exactly the condition that $f-t$ be sum of squares

The Primal Relaxation of a Polynomial Program

Since we have a QCQP, there is also an SDP primal relaxation, constructed via the lifting

$$
Y=\left[\begin{array}{l}
1 \\
y
\end{array}\right]\left[\begin{array}{l}
1 \\
y
\end{array}\right]^{T}
$$

It is the SDP

$$
\begin{array}{ll}
\text { minimize } & \operatorname{tr}\left[\begin{array}{rrrr}
a_{0} & \frac{a_{1}}{2} & \frac{a_{2}}{2} & \frac{a_{3}}{2} \\
0 & 0 & \frac{a_{4}}{2} \\
& & 0 & \frac{a_{5}}{2} \\
& & a_{6}
\end{array}\right] Y \\
\text { subject to } & Y \succeq 0 \\
& Y_{11}=1 \\
& Y_{22}=Y_{13}=Y_{33} \\
& Y_{14}=Y_{23}
\end{array}
$$

The Primal Relaxation of a Polynomial Program

This is constructed by

$$
Y=\left[\begin{array}{l}
1 \\
y
\end{array}\right]\left[\begin{array}{l}
1 \\
y
\end{array}\right]^{T}=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
x^{3}
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
x^{3}
\end{array}\right]^{T}=\left[\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
x & x^{2} & x^{3} & x^{4} \\
x^{2} & x^{3} & x^{4} & x^{5} \\
x^{3} & x^{4} & x^{5} & x^{6}
\end{array}\right]
$$

- One may construct this directly from the polynomial program
- Direct extensions to the multivariable case
- The feasible set of Y may be projected to give a feasible set of x
- If the optimal Y has $\operatorname{rank} Y=1$ then the relaxation is exact

Lifting

Higher dimensional representations have several possible advantages

- One may find simpler representations, e.g., polytopes
- Basic semialgebraic sets may project to non-basic ones
- Adding new variables via lifting allows new valid inequalities, which tightens the dual
- Using polynomial lifting allows more constraints to be represented in LP or SDP form
- Lifting wraps the feasible set onto a higher dimensional variety; this tends to map interior points to boundary points

Outer Approximation of Semialgebraic Sets

The primal SDP relaxation allows us to construct outer approximation of a semialgebraic set

For example, one can compute an outer approximation of the epigraph

$$
S=\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \geq f\left(x_{1}\right)\right\}
$$

In one variable, the SDP relaxation gives exactly the convex hull, since S is contained in a halfspace

$$
\left\{x \in \mathbb{R}^{2} \mid a^{T} x \leq b\right\}
$$

if and only if the following polynomial inequality holds

$$
a_{1} x+a_{2} f(x) \leq b \text { for all } x
$$

Example: Outer Approximation of the Epigraph

Let's look at the univariate example

$$
f=\frac{1}{2}(x-1)(x-2)(x-3)(x-5)
$$

If $y \geq f(x)$ then the following SDP is feasible

$$
\begin{aligned}
y & \geq \frac{1}{4} \mathbf{t r}\left[\begin{array}{ccc}
60 & -61 & 41 \\
-61 & 0 & -11 \\
41 & -11 & 2
\end{array}\right] X \\
X & \succeq 0 \\
X_{22} & =2 X_{12} \quad X_{11}=1 \\
X_{12} & =x
\end{aligned}
$$

Moments Interpretation of the Primal Relaxation

Instead of trying to minimize directly f, we can solve

$$
\begin{aligned}
\operatorname{minimize} & \mathbf{E} f=\int_{\mathbb{R}^{n}} f(x) p(x) d x \\
\text { subject to } & p \text { is a probability distribution on } \mathbb{R}^{n}
\end{aligned}
$$

- This is a dual problem to minimizing f
- If f has a unique minimum at x_{0}, then the optimal will be a point measure at x_{0}
- Essentially due to Lasserre

Moments Interpretation of the Primal Relaxation

suppose $y=\left[\begin{array}{lllll}1 & x & y & x y & x^{2}\end{array} \ldots\right]^{T}$, then $f=c^{T} y$ and

$$
\mathbf{E} f=c^{T} \mathbf{E} y
$$

$\mathbf{E} y$ is the vector of moments of the distribution
so we have the equivalent problem

$$
\begin{aligned}
\operatorname{minimize} & c^{T} z \\
\text { subject to } & z \text { is a vector of moments of } y
\end{aligned}
$$

Example

Since $\mathbf{E} y y^{T} \succeq 0$ for any distribution, we have valid inequalities

$$
\mathbf{E}\left[\begin{array}{l}
1 \\
x \\
y
\end{array}\right]\left[\begin{array}{l}
1 \\
x \\
y
\end{array}\right]^{T}=\mathbf{E}\left[\begin{array}{ccc}
1 & x & y \\
x & x^{2} & x y \\
y & x y & y^{2}
\end{array}\right] \succeq 0
$$

so to find a lower bound $x^{2}+2 x y+3 y^{2}$ we solve the SDP

$$
\begin{aligned}
\operatorname{minimize} & {\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] z } \\
\text { subject to } & M \succeq 0 \\
& z_{1}=M_{22}, z_{2}=M_{12}, z_{3}=M_{22}
\end{aligned}
$$

- This is exactly the primal SDP relaxation; the dual of SOS
- Similar to MAXCUT, where the SDP relaxation may be viewed as a covariance matrix

A General Scheme

- Primal: the solution to the lifted problem may suggest candidate points where the polynomial is negative.
- Dual: the sum of squares certifies or proves polynomial nonnegativity.

