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convex quadratic constraints

suppose P is symmetric, and P � 0; we can represent the convex quadratic constraint

xTPx + qTx + r < 0

as a semidefinite programming constraint as follows

write P as the product P = ATA via Cholesky or eigenvalue decomposition, then

xTPx + qTx + r < 0 ⇐⇒
[
−I Ax
xTAT qTx + r

]
≺ 0
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Quadratic programming

A quadratically constrained quadratic program (QCQP) has the form

minimize f0(x)

subject to fi(x) ≤ 0 for all i = 1, . . . ,m

where the functions fi : Rn → R have the form

fi(x) = xTPix + qTi x + ri

If Pi � 0 then fi is a convex function

• if all the fi are convex then the QCQP may be solved by semidefinite programming

• but specialized software for second-order cone programming is more efficient
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MAXCUT

given an undirected graph, with no self-loops

• vertex set V = { 1, . . . , n }

• edge set E ⊂
{
{i, j} | i, j ∈ V, i 6= j

}

For a subset S ⊂ V , the capacity of S is the number of edges connecting a node in S to
a node not in S

the MAXCUT problem

find S ⊂ V with maximum capacity

the example above shows a cut with capacity 15; this is the maximum
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example

a graph with 12 nodes, 24 edges; the maximum capacity cmax = 20
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problem formulation

the graph is defined by its adjacency matrix

Qij =

{
1 if {i, j} ∈ E
0 otherwise

and specify a cut S by a vector x ∈ Rn

xi =

{
1 if i ∈ S
−1 otherwise

then 1− xixj = 2 if {i, j} is a cut, so the capacity of x is

c(x) =
1

4

n∑
i=1

n∑
j=1

(1− xixj)Qij

the extra factor of 1
2 arises because A is symmetric
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optimization formulation

so we’d like to solve

minimize xTQx

subject to xi ∈ {−1, 1 } for all i = 1, . . . , n

call the optimal value p?, then the maximum cut is

cmax =
1

4

n∑
i=1

n∑
j=1

Qij −
1

4
p?
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Boolean optimization

A classic combinatorial problem:

minimize xTQx

subject to xi ∈ {−1, 1}

• Many other examples; knapsack, LQR with binary inputs, etc.

• Can model the constraints with quadratic equations:

x2i − 1 = 0 ⇐⇒ xi ∈ {−1, 1}

• An exponential number of points. Cannot check them all!

• The problem is NP-complete (even if Q � 0).

Despite the hardness of the problem, there are some very good approaches. . .



9

SDP Relaxations

we can find a lower bound on the minimum of this QP, (and hence an upper bound on
MAXCUT) using the dual problem; the primal is

minimize xTQx

subject to x2i − 1 = 0

the Lagrangian is

L(x, λ) = xTQx−
n∑
i=1

λi(x
2
i − 1) = xT (Q− Λ)x + trΛ

where Λ = diag(λ1, . . . , λn); the Lagrangian is bounded below w.r.t. x if Q− Λ � 0

The dual is therefore the SDP

maximize trΛ

subject to Q− Λ � 0
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SDP Relaxations

From this SDP we obtain a primal-dual pair of SDP relaxations

minimize xTQx

subject to x2i = 1

minimize trQX
subject to X � 0

Xii = 1

maximize trΛ
subject to Q � Λ

Λ diagonal

• We derived them from Lagrangian and SDP duality

• But, these SDP relaxations arise in many other ways

• Well-known in combinatorial optimization, graph theory, etc.

• Several interpretations
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SDP Relaxations: Dual Side

Gives a simple underestimator of the objective function.

maximize trΛ

subject to Q � Λ

Λ diagonal

Directly provides a lower bound on the objective: for any feasible x:

xTQx ≥ xTΛx =

n∑
i=1

Λiix
2
i = trΛ

• The first inequality follows from Q � Λ

• The second equation from Λ being diagonal

• The third, from xi ∈ {+1,−1}
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SDP Relaxations: Primal Side

The original problem is:

minimize xTQx

subject to x2i = 1

Let X := xxT . Then
xTQx = trQxxT = trQX

Therefore, X � 0, has rank one, and Xii = x2i = 1.

Conversely, any matrix X with

X � 0, Xii = 1, rankX = 1

necessarily has the form X = xxT for some ±1 vector x.
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Primal Side

Therefore, the original problem can be exactly rewritten as:

minimize trQX

subject to X � 0

Xii = 1

rank(X) = 1

Interpretation: lift to a higher dimensional space, from Rn to Sn.

Dropping the (nonconvex) rank constraint, we obtain the relaxation.

If the solution X has rank 1, then we have solved the original problem.

Otherwise, rounding schemes to project solutions. In some cases, approximation guaran-
tees (e.g. Goemans-Williamson for MAX CUT).
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feasible points and certificates

minimize trQX
subject to X � 0

Xii = 1

maximize trΛ
subject to Q � Λ

Λ diagonal

• Dual relaxations give certified bounds.

• Primal relaxations give information about possible feasible points.

• Both are solved simultaneously by primal-dual SDP solvers
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Example
minimize 2x1x2 + 4x1x3 + 6x2x3

subject to x2i = 1

The associated matrix is Q =

0 1 2
1 0 3
2 3 0

. The SDP solutions are:

X =

 1 1 −1
1 1 −1
−1 −1 1

 , Λ =

−1 0 0
0 −2 0
0 0 −5


We have X � 0, Xii = 1, Q− Λ � 0, and

trQX = trΛ = −8

Since X is rank 1, from X = xxT we recover the optimal x =
[
1 1 −1

]T
,
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Spectrahedron

We can visualize this (in 3× 3):

X =

 1 p1 p2
p1 1 p3
p2 p3 1

 � 0

in (p1, p2, p3) space.

When optimizing the linear objective function

trQX = 2p1 + 4p2 + 6p3,

the optimal solution is at the vertex (1,−1,−1).
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Randomization

suppose we solve the primal relaxation

minimize trQX

subject to X � 0

Xii = 1 for all i = 1, . . . , n

and the optimal X is not rank 1

the following randomized algorithm gives a feasible point

factorize X as X = V TV , where V =
[
v1 . . . vn

]
∈ Rr×n

then Xij = vTi vj, and since Xii = 1 this factorization gives n vectors on the unit sphere
in Rr

interpretation; instead of assigning either 1 or −1 to each vertex, we have assigned a point
on the unit sphere in Rr to each vertex
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randomized slicing

pick a random vector q ∈ Rr, and choose cut

S =
{
i | vTi q ≥ 0

}
then the probability that {i, j} is a cut edge is

angle between vi and vj
π

=
1

π
arccos vTi vj

=
1

π
arccosXij

so the expected cut capacity is

csdp-expected =
1

2

n∑
i=1

n∑
j=1

1

π
Qij arccosXij



−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3
arcos(t)

α(1−t)π/2

19

randomization

the upper bound on the cut capacity obtained from the SDP is

csdp-upper-bound =

n∑
i=1

n∑
j=1

1

4
(1−Xij)Qij

with α = 0.878, we have

α(1− t)π
2
≤ arccos(t) for all t ∈ [−1, 1]

so we have

csdp-upper-bound ≤
1

2απ

n∑
i=1

n∑
j=1

Qij arccosXij

=
1

α
csdp-expected
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Randomization

So far, we have

• csdp-upper-bound ≤ 1
α csdp-expecte d

• Also clearly csdp-expected ≤ cmax

• And cmax ≤ csdp-upper-bound

After solving the SDP, we slice randomly to generate a random family of feasible points.

We can sandwich the expected value of this family as follows. (α = 0.878)

αcsdp-upper-bound ≤ csdp-expected ≤ cmax ≤ csdp-upper-bound
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coin-flipping approach

suppose we just randomly assigned vertices to S with probability 1
2; then

ccoinflip-expected =
1

4

n∑
i=1

n∑
j=1

Qij

also a trivial upper bound on the maximum cut is just the total number of edges

ctrivial-upper-bound =
1

2

n∑
i=1

n∑
j=1

Qij

and so ccoinflip-expected = 1
2ctrivial-upper-bound

again, since ccoinflip-expected ≤ cmax, we have
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Coin-Flipping Approach

We have

• ccoinflip-expected = 1
2ctrivial-upper-bound

• ccoinflip-expected ≤ cmax

• cmax ≤ ctrivial-upper-bound

Again, we have a sandwich result

1
2ctrivial-upper-bound = ccoinflip-expected ≤ cmax ≤ ctrivial-upper-bound
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Example

• 64 vertices, 126 edges

• SDP upper bound 116
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A General Scheme

Boolean Minimization

Relaxed X Dual-Bound ¤
SDP

Duality

Primal
Relaxation

Lagrangian
Duality

• The relaxed X suggests candidate points.

• The diagonal matrix Λ certifies a lower bound.

We will learn systematic ways of constructing these relaxations, and more. . .


