EE464: SDP Relaxations for QP
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convex quadratic constraints

suppose P is symmetric, and P > 0; we can represent the convex quadratic constraint
' Pr+qlz+1r <0

as a semidefinite programming constraint as follows

write P as the product P = A’ A via Cholesky or eigenvalue decomposition, then

' Pr+ ¢tz +1r <0 — [_I A ]<O




Quadratic programming

A quadratically constrained quadratic program (QCQP) has the form

minimize  fy(x)
subject to filz) <0 foralli=1,....m

where the functions f; : R” — R have the form

filz) = o' Pa+ (]ZT.CC + 7

If P, = 0 then f; is a convex function

e if all the f; are convex then the QCQP may be solved by semidefinite programming

e but specialized software for second-order cone programming is more efficient
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MAXCUT

given an undirected graph, with no self-loops PY
Q
o vertexset V ={1,....,n} \
¢ 0
oedgesetEC{{i,j}\i,jGV,i;éj} 4

For a subset S C V/, the capacity of S is the number of edges connecting a node in S to
a node not in .S

the MAXCUT problem

find S C V' with maximum capacity

the example above shows a cut with capacity 15; this is the maximum
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example

a graph with 12 nodes, 24 edges; the maximum capacity cmnax = 20
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problem formulation

the graph is defined by its adjacency matrix

0 = {1 f{ij} e B

0 otherwise

and specify a cut S by a vector x € R"

{1 ficS
X, = .

—1 otherwise

then 1 — x;z; = 2 if {4, j} is a cut, so the capacity of z is

Z Z — LTy sz

zljl

the extra factor of % arises because A is symmetric
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optimization formulation

so we'd like to solve

minimize w1 Qx
subjectto  x; € {—-1,1}

call the optimal value p*, then the maximum cut is

forallz=1,...

I 1
Cmax:EZZQij _Ep*

i=1 j=1
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Boolean optimization

A classic combinatorial problem:
Coe T
minimize x Qx
subject to  x; € {—1,1}

e Many other examples; knapsack, LQR with binary inputs, etc.
e Can model the constraints with quadratic equations:

i —1=0 <= mx;€{-1,1}

(4

e An exponential number of points. Cannot check them all!

e The problem is NP-complete (even if () = 0).

Despite the hardness of the problem, there are some very good approaches. . .
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SDP Relaxations

we can find a lower bound on the minimum of this QP, (and hence an upper bound on
MAXCUT) using the dual problem; the primal is

minimize w1 Qx

subject to i —1=0

the Lagrangian is

Lz, \) = 21 Qx — Z Ni(z? —1) =21 (Q — Nx +tr A

1=1

where A = diag(\y,..., \,); the Lagrangian is bounded below w.r.t. z if Q — A > 0

The dual is therefore the SDP

maximize tr A
subjectto QQ — A >0
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SDP Relaxations

From this SDP we obtain a primal-dual pair of SDP relaxations

minimize w1 Qx
subject to ri =1
minimize  tr QX maximize  trA
subjectto X >0 subjectto Q) >~ A
Xii =1 A diagonal

e We derived them from Lagrangian and SDP duality
e But, these SDP relaxations arise in many other ways
e Well-known in combinatorial optimization, graph theory, etc.

e Several interpretations



SDP Relaxations: Dual Side

Gives a simple underestimator of the objective function.

maximize trA
subjectto Q) = A
A diagonal

Directly provides a lower bound on the objective: for any feasible x:
n
w1 Qx >zl Ae = Z Amﬂ?? =tr A
i=1
e The first inequality follows from () = A
e The second equation from A being diagonal

e The third, from x; € {+1,—1}
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SDP Relaxations: Primal Side

The original problem is:
minimize w1 Qx
subject to x; =1

Let X := xzx!. Then
1 Qr =trQua! =trQX
Therefore, X = 0, has rank one, and X;; = :1:22 — 1.

Conversely, any matrix X with
X0, X;=1rankX =1

necessarily has the form X = xz! for some +1 vector z.
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Primal Side
Therefore, the original problem can be exactly rewritten as:
minimize trQX
subjectto X > 0
Xii =1
rank(X) =1
Interpretation: /ift to a higher dimensional space, from R" to §".
Dropping the (nonconvex) rank constraint, we obtain the relaxation.

If the solution X has rank 1, then we have solved the original problem.

Otherwise, rounding schemes to project solutions. In some cases, approximation guaran-
tees (e.g. Goemans-Williamson for MAX CUT).
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feasible points and certificates

minimize  tr QX maximize  trA
subjectto X >0 subjectto Q) = A
Xii =1 A diagonal

e Dual relaxations give certified bounds.

e Primal relaxations give information about possible feasible points.

e Both are solved simultaneously by primal-dual SDP solvers
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Example
minimize 2x1x9 + 4x123 + 62973

subject to 27 =1

012
The associated matrixis ) = |1 0 3|. The SDP solutions are:
230
11 1] —1 0 0]
X = 1 1 -1, A= 0—2 0
-1 -1 1 0 0 =5

We have X >0, X;;=1, Q@ —A >0, and
trQX =trA = -8

T

Since X is rank 1, from X = xx' we recover the optimal = = [1 1 —1}T,



16

Spectrahedron

We can visualize this (in 3 x 3):

1 pp pol
X: pllpg >‘O

P2 p3 1

p3

in (p1, P2, p3) space.

When optimizing the linear objective function

tr QX = 2p; + 4py + 6ps3,

the optimal solution is at the vertex (1, —1,—1).



17

Randomization

suppose we solve the primal relaxation

minimize tr QX
subject to X >0
Xi=1 forallz=1,...,n

and the optimal X is not rank 1

the following randomized algorithm gives a feasible point

factorize X as X = VIV, where V = [’Ul e ’Un] c R

then X;; = vZ-ij, and since X;; = 1 this factorization gives n vectors on the unit sphere
in R”

interpretation; instead of assigning either 1 or —1 to each vertex, we have assigned a point
on the unit sphere in R" to each vertex
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randomized slicing

pick a random vector ¢ € R", and choose cut
S={ilvfq=0}

then the probability that {7, j} is a cut edge is

angle between v; and v; 1 T
= — arccos v; v,
T 7'('
1
= — arccos Xj;
-

so the expected cut capacity is

[N |
Csdp-expected — 5 E E ;sz arccos Xz'j

i=1 j=1
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randomization

the upper bound on the cut capacity obtained from the SDP is di — e
Csdp-upper-bound — Z Z - zy ng
1=1 j=1 2r

151

with o = 0.878, we have

a(l — t)2 < arccos(t)  forall t € [—1,1] 0|
so we have
1 n n
Csdp-upper-bound S % Z Z Qij aIrccos Xz’j
i=1 j=1
1

= — Csdp-expected
o pP-€Xp
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Randomization

So far, we have

1
® Csdp-upper-bound < o Csdp-expecte d
e Also clearly Csdp-expected < Cmax

[ And Cmax § Csdp-upper—bound

After solving the SDP, we slice randomly to generate a random family of feasible points.

We can sandwich the expected value of this family as follows. (o = 0.878)

QCsdp-upper-bound < Csdp-expected < Cmax < Csdp-upper-bound
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coin-flipping approach
suppose we just randomly assigned vertices to .S with probability %; then
1 n n
Ccoinflip-expected — Z Z Z Qz’j
1=1 j=1
also a trivial upper bound on the maximum cut is just the total number of edges
1 n n
Ctrivial-upper-bound — 5 Z Z Qz’j
1=1 j7=1
1
and so Ccoinflip-expected — 5Ctrivial-upper-bound

agaln, SINCE Ccoinflip-expected < Cmax, We have
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Coin-Flipping Approach
We have
®  Ccoinflip-expected — %Ctrivial—upper—bound
®  Ccoinflip-expected < Cmax

® Cmax S Ctrivial-upper-bound

Again, we have a sandwich result

1

Qctrivial—upper—bound — Ccoinflip-expected S Cmax S Ctrivial-upper-bound
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Example

e 064 vertices, 126 edges
e SDP upper bound 116
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A General Scheme

Boolean Minimization

Lagrangian

Primal Duality

Relaxation

Relaxed X < DSDI-D P> Dual-Bound A
uality

e The relaxed X suggests candidate points.

e The diagonal matrix A certifies a lower bound.

We will learn systematic ways of constructing these relaxations, and more. . .



