EE464: SDP Relaxations for QP

convex quadratic constraints

suppose P is symmetric, and $P \succeq 0$; we can represent the convex quadratic constraint

$$
x^{T} P x+q^{T} x+r<0
$$

as a semidefinite programming constraint as follows
write P as the product $P=A^{T} A$ via Cholesky or eigenvalue decomposition, then

$$
x^{T} P x+q^{T} x+r<0 \quad \Longleftrightarrow \quad\left[\begin{array}{cc}
-I & A x \\
x^{T} A^{T} & q^{T} x+r
\end{array}\right] \prec 0
$$

Quadratic programming

A quadratically constrained quadratic program (QCQP) has the form

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0 \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

where the functions $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ have the form

$$
f_{i}(x)=x^{T} P_{i} x+q_{i}^{T} x+r_{i}
$$

If $P_{i} \succeq 0$ then f_{i} is a convex function

- if all the f_{i} are convex then the QCQP may be solved by semidefinite programming
- but specialized software for second-order cone programming is more efficient

MAXCUT

given an undirected graph, with no self-loops

- vertex set $V=\{1, \ldots, n\}$
- edge set $E \subset\{\{i, j\} \mid i, j \in V, i \neq j\}$

For a subset $S \subset V$, the capacity of S is the number of edges connecting a node in S to a node not in S
the MAXCUT problem
find $S \subset V$ with maximum capacity
the example above shows a cut with capacity 15 ; this is the maximum

example

a graph with 12 nodes, 24 edges; the maximum capacity $c_{\text {max }}=20$

problem formulation

the graph is defined by its adjacency matrix

$$
Q_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

and specify a cut S by a vector $x \in \mathbb{R}^{n}$

$$
x_{i}= \begin{cases}1 & \text { if } i \in S \\ -1 & \text { otherwise }\end{cases}
$$

then $1-x_{i} x_{j}=2$ if $\{i, j\}$ is a cut, so the capacity of x is

$$
c(x)=\frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(1-x_{i} x_{j}\right) Q_{i j}
$$

the extra factor of $\frac{1}{2}$ arises because A is symmetric

optimization formulation

so we'd like to solve

$$
\begin{aligned}
\operatorname{minimize} & x^{T} Q x \\
\text { subject to } & x_{i} \in\{-1,1\} \quad \text { for all } i=1, \ldots, n
\end{aligned}
$$

call the optimal value p^{\star}, then the maximum cut is

$$
c_{\max }=\frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}-\frac{1}{4} p^{\star}
$$

Boolean optimization

A classic combinatorial problem:

$$
\begin{aligned}
\operatorname{minimize} & x^{T} Q x \\
\text { subject to } & x_{i} \in\{-1,1\}
\end{aligned}
$$

- Many other examples; knapsack, LQR with binary inputs, etc.
- Can model the constraints with quadratic equations:

$$
x_{i}^{2}-1=0 \quad \Longleftrightarrow \quad x_{i} \in\{-1,1\}
$$

- An exponential number of points. Cannot check them all!
- The problem is NP-complete (even if $Q \succeq 0$).

Despite the hardness of the problem, there are some very good approaches...

SDP Relaxations

we can find a lower bound on the minimum of this QP, (and hence an upper bound on MAXCUT) using the dual problem; the primal is

$$
\begin{aligned}
\operatorname{minimize} & x^{T} Q x \\
\text { subject to } & x_{i}^{2}-1=0
\end{aligned}
$$

the Lagrangian is

$$
L(x, \lambda)=x^{T} Q x-\sum_{i=1}^{n} \lambda_{i}\left(x_{i}^{2}-1\right)=x^{T}(Q-\Lambda) x+\operatorname{tr} \Lambda
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$; the Lagrangian is bounded below w.r.t. x if $Q-\Lambda \succeq 0$

The dual is therefore the SDP

$$
\begin{aligned}
\operatorname{maximize} & \operatorname{tr} \Lambda \\
\text { subject to } & Q-\Lambda \succeq 0
\end{aligned}
$$

SDP Relaxations

From this SDP we obtain a primal-dual pair of SDP relaxations

$$
\begin{aligned}
\operatorname{minimize} & x^{T} Q x \\
\text { subject to } & x_{i}^{2}=1
\end{aligned}
$$

minimize	$\operatorname{tr} Q X$	maximize	$\operatorname{tr} \Lambda$
subject to	$X \succeq 0$	subject to	$Q \succeq \Lambda$
	$X_{i i}=1$		Λ diagonal

- We derived them from Lagrangian and SDP duality
- But, these SDP relaxations arise in many other ways
- Well-known in combinatorial optimization, graph theory, etc.
- Several interpretations

SDP Relaxations: Dual Side

Gives a simple underestimator of the objective function.

$$
\begin{aligned}
\text { maximize } & \operatorname{tr} \Lambda \\
\text { subject to } & Q \succeq \Lambda \\
& \Lambda \text { diagonal }
\end{aligned}
$$

Directly provides a lower bound on the objective: for any feasible x :

$$
x^{T} Q x \geq x^{T} \Lambda x=\sum_{i=1}^{n} \Lambda_{i i} x_{i}^{2}=\operatorname{tr} \Lambda
$$

- The first inequality follows from $Q \succeq \Lambda$
- The second equation from Λ being diagonal
- The third, from $x_{i} \in\{+1,-1\}$

SDP Relaxations: Primal Side

The original problem is:

$$
\begin{aligned}
\operatorname{minimize} & x^{T} Q x \\
\text { subject to } & x_{i}^{2}=1
\end{aligned}
$$

Let $X:=x x^{T}$. Then

$$
x^{T} Q x=\operatorname{tr} Q x x^{T}=\operatorname{tr} Q X
$$

Therefore, $X \succeq 0$, has rank one, and $X_{i i}=x_{i}^{2}=1$.

Conversely, any matrix X with

$$
X \succeq 0, \quad X_{i i}=1, \quad \operatorname{rank} X=1
$$

necessarily has the form $X=x x^{T}$ for some ± 1 vector x.

Primal Side

Therefore, the original problem can be exactly rewritten as:

$$
\begin{aligned}
\operatorname{minimize} & \operatorname{tr} Q X \\
\text { subject to } & X \succeq 0 \\
& X_{i i}=1 \\
& \operatorname{rank}(X)=1
\end{aligned}
$$

Interpretation: lift to a higher dimensional space, from \mathbb{R}^{n} to \mathbb{S}^{n}.
Dropping the (nonconvex) rank constraint, we obtain the relaxation.
If the solution X has rank 1, then we have solved the original problem.
Otherwise, rounding schemes to project solutions. In some cases, approximation guarantees (e.g. Goemans-Williamson for MAX CUT).

feasible points and certificates

minimize	$\operatorname{tr} Q X$	maximize	$\operatorname{tr} \Lambda$
subject to	$X \succeq 0$	subject to	$Q \succeq \Lambda$
	$X_{i i}=1$		Λ diagonal

- Dual relaxations give certified bounds.
- Primal relaxations give information about possible feasible points.
- Both are solved simultaneously by primal-dual SDP solvers

Example

$$
\begin{aligned}
\operatorname{minimize} & 2 x_{1} x_{2}+4 x_{1} x_{3}+6 x_{2} x_{3} \\
\text { subject to } & x_{i}^{2}=1
\end{aligned}
$$

The associated matrix is $Q=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0\end{array}\right]$. The SDP solutions are:

$$
X=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right], \quad \Lambda=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -5
\end{array}\right]
$$

We have $X \succeq 0, X_{i i}=1, Q-\Lambda \succeq 0$, and

$$
\operatorname{tr} Q X=\operatorname{tr} \Lambda=-8
$$

Since X is rank 1 , from $X=x x^{T}$ we recover the optimal $x=\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]^{T}$,

Spectrahedron

We can visualize this (in 3×3):

$$
X=\left[\begin{array}{ccc}
1 & p_{1} & p_{2} \\
p_{1} & 1 & p_{3} \\
p_{2} & p_{3} & 1
\end{array}\right] \succeq 0
$$

in $\left(p_{1}, p_{2}, p_{3}\right)$ space.

When optimizing the linear objective function

$$
\operatorname{tr} Q X=2 p_{1}+4 p_{2}+6 p_{3},
$$

the optimal solution is at the vertex $(1,-1,-1)$.

Randomization

suppose we solve the primal relaxation

minimize	$\operatorname{tr} Q X$
subject to	$X \succeq 0$
	$X_{i i}=1 \quad$ for all $i=1, \ldots, n$

and the optimal X is not rank 1
the following randomized algorithm gives a feasible point
factorize X as $X=V^{T} V$, where $V=\left[\begin{array}{lll}v_{1} & \ldots & v_{n}\end{array}\right] \in \mathbb{R}^{r \times n}$
then $X_{i j}=v_{i}^{T} v_{j}$, and since $X_{i i}=1$ this factorization gives n vectors on the unit sphere in \mathbb{R}^{r}
interpretation; instead of assigning either 1 or -1 to each vertex, we have assigned a point on the unit sphere in \mathbb{R}^{r} to each vertex

randomized slicing

pick a random vector $q \in \mathbb{R}^{r}$, and choose cut

$$
S=\left\{i \mid v_{i}^{T} q \geq 0\right\}
$$

then the probability that $\{i, j\}$ is a cut edge is

$$
\begin{aligned}
\frac{\text { angle between } v_{i} \text { and } v_{j}}{\pi} & =\frac{1}{\pi} \arccos v_{i}^{T} v_{j} \\
& =\frac{1}{\pi} \arccos X_{i j}
\end{aligned}
$$

so the expected cut capacity is

$$
c_{\text {sdp-expected }}=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{\pi} Q_{i j} \arccos X_{i j}
$$

randomization

the upper bound on the cut capacity obtained from the SDP is

$$
c_{\text {sdp-upper-bound }}=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{4}\left(1-X_{i j}\right) Q_{i j}
$$

with $\alpha=0.878$, we have

$$
\alpha(1-t) \frac{\pi}{2} \leq \arccos (t) \quad \text { for all } t \in[-1,1]
$$

so we have

$$
\begin{aligned}
c_{\text {sdp-upper-bound }} & \leq \frac{1}{2 \alpha \pi} \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j} \arccos X_{i j} \\
& =\frac{1}{\alpha} c_{\text {sdp-expected }}
\end{aligned}
$$

Randomization

So far, we have

- $c_{\text {sdp-upper-bound }} \leq \frac{1}{\alpha} c_{\text {sdp-expecte d }}$
- Also clearly $c_{\text {sdp-expected }} \leq c_{\text {max }}$
- And $c_{\text {max }} \leq c_{\text {sdp-upper-bound }}$

After solving the SDP, we slice randomly to generate a random family of feasible points.
We can sandwich the expected value of this family as follows. ($\alpha=0.878$)

$$
\alpha c_{\text {sdp-upper-bound }} \leq c_{\text {sdp-expected }} \leq c_{\max } \leq c_{\text {sdp-upper-bound }}
$$

coin-flipping approach

suppose we just randomly assigned vertices to S with probability $\frac{1}{2}$; then

$$
c_{\text {coinflip-expected }}=\frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}
$$

also a trivial upper bound on the maximum cut is just the total number of edges

$$
c_{\text {trivial-upper-bound }}=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}
$$

and so $c_{\text {coinflip-expected }}=\frac{1}{2} c_{\text {trivial-upper-bound }}$
again, since $c_{\text {coinflip-expected }} \leq c_{\text {max }}$, we have

Coin-Flipping Approach

We have

- $c_{\text {coinflip-expected }}=\frac{1}{2} c_{\text {trivial-upper-bound }}$
- $c_{\text {coinflip-expected }} \leq c_{\max }$
- $c_{\text {max }} \leq c_{\text {trivial-upper-bound }}$

Again, we have a sandwich result

$$
\frac{1}{2} c_{\text {trivial-upper-bound }}=c_{\text {coinflip-expected }} \leq c_{\max } \leq c_{\text {trivial-upper-bound }}
$$

Example

- 64 vertices, 126 edges
- SDP upper bound 116

histogram of SDP capacities

histogram of coin-flip capacities

A General Scheme

- The relaxed X suggests candidate points.
- The diagonal matrix Λ certifies a lower bound.

We will learn systematic ways of constructing these relaxations, and more...

