EE464: SDP Relaxations for QP

convex quadratic constraints

suppose P is symmetric, and $P \succeq 0$; we can represent the convex quadratic constraint

$$x^T P x + q^T x + r < 0$$

as a semidefinite programming constraint as follows

write P as the product $P = A^T A$ via Cholesky or eigenvalue decomposition, then

$$x^T P x + q^T x + r < 0 \qquad \Longleftrightarrow \qquad \begin{bmatrix} -I & A x \\ x^T A^T & q^T x + r \end{bmatrix} \prec 0$$

Quadratic programming

A quadratically constrained quadratic program (QCQP) has the form

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0 & \mbox{ for all } i=1,\ldots,m \end{array}$

where the functions $f_i : \mathbb{R}^n \to \mathbb{R}$ have the form

$$f_i(x) = x^T P_i x + q_i^T x + r_i$$

If $P_i \succeq 0$ then f_i is a convex function

- if all the f_i are convex then the QCQP may be solved by semidefinite programming
- but specialized software for *second-order cone programming* is more efficient

MAXCUT

given an undirected graph, with no self-loops

• vertex set $V = \{ 1, ..., n \}$

• edge set
$$E \subset \left\{ \{i, j\} \mid i, j \in V, i \neq j \right\}$$

For a subset $S \subset V$, the *capacity* of S is the number of edges connecting a node in S to a node not in S

the MAXCUT problem

find $S \subset V$ with maximum capacity

the example above shows a cut with capacity 15; this is the maximum

example

a graph with 12 nodes, 24 edges; the maximum capacity $c_{\max} = 20$

problem formulation

the graph is defined by its adjacency matrix

$$Q_{ij} = \begin{cases} 1 & \text{if } \{i,j\} \in E \\ 0 & \text{otherwise} \end{cases}$$

and specify a cut S by a vector $x \in \mathbb{R}^n$

$$x_i = \begin{cases} 1 & \text{if } i \in S \\ -1 & \text{otherwise} \end{cases}$$

then $1 - x_i x_j = 2$ if $\{i, j\}$ is a cut, so the capacity of x is

$$c(x) = \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} (1 - x_i x_j) Q_{ij}$$

the extra factor of $\frac{1}{2}$ arises because A is symmetric

optimization formulation

so we'd like to solve

minimize
$$x^T Q x$$

subject to $x_i \in \{-1, 1\}$ for all $i = 1, ..., n$

call the optimal value $p^{\star}\ensuremath{\text{,}}$ then the maximum cut is

$$c_{\max} = \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij} - \frac{1}{4} p^{\star}$$

Boolean optimization

A classic combinatorial problem:

minimize $x^T Q x$ subject to $x_i \in \{-1, 1\}$

- Many other examples; knapsack, LQR with binary inputs, etc.
- Can model the constraints with quadratic equations:

$$x_i^2 - 1 = 0 \quad \Longleftrightarrow \quad x_i \in \{-1, 1\}$$

- An exponential number of points. Cannot check them all!
- The problem is *NP-complete* (even if $Q \succeq 0$).

Despite the hardness of the problem, there are some very good approaches...

SDP Relaxations

we can find a lower bound on the minimum of this QP, (and hence an upper bound on MAXCUT) using the dual problem; the primal is

the Lagrangian is

$$L(x,\lambda) = x^T Q x - \sum_{i=1}^n \lambda_i (x_i^2 - 1) = x^T (Q - \Lambda) x + \mathbf{tr} \Lambda$$

where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$; the Lagrangian is bounded below w.r.t. x if $Q - \Lambda \succeq 0$

The dual is therefore the SDP

 $\begin{array}{ll} \text{maximize} & \mathbf{tr}\,\Lambda\\ \text{subject to} & Q-\Lambda\succeq 0 \end{array}$

SDP Relaxations

From this SDP we obtain a *primal-dual pair of SDP relaxations*

minimize subject to	$ \mathbf{tr} QX \\ X \succeq 0 \\ X_{ii} = 1 $	maximize subject to	$ \begin{array}{l} \mathbf{tr} \Lambda \\ Q \succeq \Lambda \\ \Lambda \ \text{diagonal} \end{array} $
------------------------	--	------------------------	---

- We derived them from Lagrangian and SDP duality
- But, these SDP relaxations arise in *many* other ways
- Well-known in combinatorial optimization, graph theory, etc.
- Several interpretations

SDP Relaxations: Dual Side

Gives a simple *underestimator* of the objective function.

```
maximize \operatorname{tr} \Lambda
subject to Q \succeq \Lambda
\Lambda diagonal
```

Directly provides a *lower bound* on the objective: for any feasible x:

$$x^T Q x \ge x^T \Lambda x = \sum_{i=1}^n \Lambda_{ii} x_i^2 = \operatorname{tr} \Lambda$$

- The first inequality follows from $Q \succeq \Lambda$
- The second equation from Λ being diagonal
- The third, from $x_i \in \{+1, -1\}$

SDP Relaxations: Primal Side

The original problem is:

 $\begin{array}{ll} \mbox{minimize} & x^T Q x \\ \mbox{subject to} & x_i^2 = 1 \end{array}$

Let $X := xx^T$. Then $x^TQx = \operatorname{tr} Qxx^T = \operatorname{tr} QX$ Therefore, $X \succeq 0$, has *rank one*, and $X_{ii} = x_i^2 = 1$.

Conversely, any matrix X with

 $X \succeq 0, \quad X_{ii} = 1, \quad \operatorname{rank} X = 1$

necessarily has the form $X = xx^T$ for some ± 1 vector x.

Primal Side

Therefore, the original problem can be exactly rewritten as:

minimize
$$\operatorname{tr} QX$$

subject to $X \succeq 0$
 $X_{ii} = 1$
 $\operatorname{rank}(X) = 1$

Interpretation: *lift* to a higher dimensional space, from \mathbb{R}^n to \mathbb{S}^n . Dropping the (nonconvex) rank constraint, we obtain the relaxation.

If the solution X has rank 1, then we have solved the original problem.

Otherwise, *rounding schemes* to project solutions. In some cases, approximation guarantees (e.g. Goemans-Williamson for MAX CUT).

feasible points and certificates

- Dual relaxations give *certified* bounds.
- Primal relaxations give information about possible *feasible* points.
- Both are solved *simultaneously* by primal-dual SDP solvers

15

minimize
$$2x_1x_2 + 4x_1x_3 + 6x_2x_3$$

subject to $x_i^2 = 1$
The associated matrix is $Q = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0 \end{bmatrix}$. The SDP solutions are:
 $X = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$, $\Lambda = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -5 \end{bmatrix}$

We have $X \succeq 0$, $X_{ii} = 1$, $Q - \Lambda \succeq 0$, and

$$\operatorname{tr} QX = \operatorname{tr} \Lambda = -8$$

Since X is rank 1, from $X = xx^T$ we recover the optimal $x = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$,

Spectrahedron

We can visualize this (in 3×3):

$$X = \begin{bmatrix} 1 & p_1 & p_2 \\ p_1 & 1 & p_3 \\ p_2 & p_3 & 1 \end{bmatrix} \succeq 0$$

in (p_1, p_2, p_3) space.

$$\operatorname{tr} QX = 2p_1 + 4p_2 + 6p_3,$$

the optimal solution is at the vertex (1, -1, -1).

Randomization

suppose we solve the primal relaxation

$$\begin{array}{ll} \text{minimize} & \mathbf{tr} \, QX \\ \text{subject to} & X \succeq 0 \\ & X_{ii} = 1 & \text{ for all } i = 1, \dots, n \end{array}$$

and the optimal X is not rank 1

the following randomized algorithm gives a feasible point

factorize X as
$$X = V^T V$$
, where $V = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \in \mathbb{R}^{r \times n}$

then $X_{ij} = v_i^T v_j$, and since $X_{ii} = 1$ this factorization gives n vectors on the unit sphere in \mathbb{R}^r

interpretation; instead of assigning either 1 or -1 to each vertex, we have assigned a point on the unit sphere in \mathbb{R}^r to each vertex

randomized slicing

pick a random vector $q \in \mathbb{R}^r$, and choose cut

$$S = \left\{ i \mid v_i^T q \ge 0 \right\}$$

then the probability that $\{i,j\}$ is a cut edge is

angle between
$$v_i$$
 and $v_j = \frac{1}{\pi} \arccos v_i^T v_j$
$$= \frac{1}{\pi} \arccos X_{ij}$$

so the expected cut capacity is

$$c_{\mathsf{sdp-expected}} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{\pi} Q_{ij} \arccos X_{ij}$$

randomization

the upper bound on the cut capacity obtained from the SDP is

$$c_{\text{sdp-upper-bound}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{4} (1 - X_{ij}) Q_{ij}$$

with $\alpha=0.878,$ we have

$$\alpha(1-t)\frac{\pi}{2} \le \arccos(t) \quad \text{for all } t \in [-1,1]$$

so we have

$$\begin{aligned} c_{\text{sdp-upper-bound}} &\leq \frac{1}{2\alpha\pi} \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij} \arccos X_{ij} \\ &= \frac{1}{\alpha} c_{\text{sdp-expected}} \end{aligned}$$

Randomization

So far, we have

- $c_{\text{sdp-upper-bound}} \leq \frac{1}{\alpha} c_{\text{sdp-expecte d}}$
- Also clearly $c_{sdp-expected} \leq c_{max}$
- And $c_{\max} \leq c_{sdp-upper-bound}$

After solving the SDP, we *slice randomly* to generate a random family of feasible points.

We can sandwich the expected value of this family as follows. ($\alpha = 0.878$)

 $\alpha c_{sdp-upper-bound} \leq c_{sdp-expected} \leq c_{max} \leq c_{sdp-upper-bound}$

coin-flipping approach

suppose we just randomly assigned vertices to S with probability $\frac{1}{2}$; then

$$c_{\text{coinflip-expected}} = \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij}$$

also a trivial upper bound on the maximum cut is just the total number of edges

$$c_{\text{trivial-upper-bound}} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij}$$

and so $c_{\text{coinflip-expected}} = \frac{1}{2}c_{\text{trivial-upper-bound}}$

again, since $c_{\rm coinflip-expected} \leq c_{\rm max}$, we have

Coin-Flipping Approach

We have

- $c_{\text{coinflip-expected}} = \frac{1}{2}c_{\text{trivial-upper-bound}}$
- $c_{\text{coinflip-expected}} \leq c_{\max}$
- $c_{\max} \leq c_{trivial-upper-bound}$

Again, we have a sandwich result

$$\frac{1}{2}c_{\text{trivial-upper-bound}} = c_{\text{coinflip-expected}} \le c_{\max} \le c_{\text{trivial-upper-bound}}$$

Example

- 64 vertices, 126 edges
- SDP upper bound 116

histogram of SDP capacities

histogram of coin-flip capacities

A General Scheme

- The *relaxed* X suggests candidate points.
- The diagonal matrix Λ *certifies* a lower bound.

We will learn systematic ways of constructing these relaxations, and more...