EE464 Fourier-Motzkin Elimination 2

efficiency of Fourier-Motzkin elimination

if A has m rows, then after elimination of x_{1} we can have no more than

$$
\left\lfloor\frac{m^{2}}{4}\right\rfloor
$$

facets

- if $m / 2$ inequalities have a positive coefficient of x_{1}, and $m / 2$ have a negative coefficient, then FM constructs exactly $m^{2} / 4$ new inequalities
- repeating this, eliminating d dimensions gives

$$
\left\lfloor\frac{m}{2}\right\rfloor^{2^{n}}
$$

inequalities

- key question: how may are are redundant? i.e., does projection produce exponentially more facets?

representation of polytopes

we can represent a polytope in the following ways

- an intersection of halfspaces, called an H polytope

$$
S=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

- the convex hull of its vertices, called a V polytope

$$
S=\operatorname{co}\left\{a_{1}, \ldots, a_{m}\right\}
$$

size of representations
in some cases, one representation is smaller than the other

- the n-cube

$$
C_{n}=\left\{x \in \mathbb{R}^{n} \mid-1 \leq x_{i} \leq 1 \text { for all } i\right\}
$$

has $2 n$ facets, and 2^{n} vertices

- the n-dimensional crosspolytope

$$
\begin{aligned}
C_{n}^{*} & =\left\{x \in \mathbb{R}^{n}\left|\sum_{i}\right| x_{i} \mid \leq 1\right\} \\
& =\operatorname{co}\left\{e_{1},-e_{1}, \ldots, e_{n},-e_{n}\right\}
\end{aligned}
$$

has $2 n$ vertices and 2^{n} facets
optimization problems
the optimization problem: given polytope S and $c \in \mathbb{R}^{n}$, find x that solves

$$
\begin{aligned}
\text { minimize } & c^{T} x \\
\text { subject to } & x \in S
\end{aligned}
$$

or state that $S=\emptyset$
roughly speaking, an equivalent problem (via bisection search) is halfspace containment
given $c \in \mathbb{R}^{n}$ and $\gamma \in \mathbb{R}$, is it true that

$$
S \subset\left\{x \in \mathbb{R}^{n} \mid c^{T} x \leq \gamma\right\}
$$

if not, find $x \in S$ such that $c^{T} x>\gamma$

membership problems

the membership problem: given polytope S and $y \in \mathbb{R}^{n}$, decide if $y \in S$, and if not find $\lambda \in \mathbb{R}^{n}$ such that

$$
\lambda^{T} y>\max \left\{\lambda^{T} x \mid x \in S\right\}
$$

the membership problem is also called the separation problem

problem solving using different representations

- V-polytope: optimization is easy; evaluate $c^{T} x$ at all vertices for membership, we need to solve an LP; duality will give certificate of infeasibility
- H-polytope: membership is easy; evaluate $A y-b$
the certificate of infeasibility is just the violated inequality
the optimization is an LP

converting between representations

suppose we are given a V-polytope

$$
\begin{aligned}
S & =\operatorname{co}\left\{a_{1}, \ldots, a_{m}\right\} \\
& =\left\{A^{T} \lambda \mid \lambda \geq 0, \lambda^{T} 1=1\right\} \\
& =\left\{x \mid \text { there exists } \lambda \text { such that } \lambda \geq 0, \lambda^{T} 1=1, x=A^{T} \lambda\right\}
\end{aligned}
$$

hence S is a projection onto $\lambda=0$ of

$$
\left\{(\lambda, x) \mid \lambda \geq 0, \lambda^{T} 1=1, x=A^{T} \lambda\right\}
$$

so we can use Fourier-Motzkin!
to handle equality constraints, either use $x \geq A^{T} \lambda$ and $x \leq A^{T} \lambda$, or use inference rules with unsigned multipliers

polytopes and duality

for $S \subset \mathbb{R}^{n}$ define the polar set

$$
S^{*}=\left\{\lambda \in \mathbb{R}^{n} \mid \lambda^{T} x \leq 1 \text { for all } x \in S\right\}
$$

- the polar of a polytope is a polytope
- facets of one correspond to vertices of the other

polar sets

polar sets

properties of polar sets

- the polar S^{*} depends on the position of S; it is not affine invariant
- $0 \in S^{*}$ for any S
- $P \subset Q$ implies that $P^{*} \supset Q^{*}$
- P^{*} is always convex, even if P is not convex
- if $0 \in P$, then $P=\left(P^{*}\right)^{*}$

polarity and representations

suppose S is a V-polytope, and $0 \in \operatorname{int}(S)$

$$
\begin{aligned}
S & =\operatorname{co}\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{R}^{n} \\
& =\left\{A^{T} \lambda \mid \lambda \geq 0,1^{T} \lambda=1\right\}
\end{aligned}
$$

then S^{*} is the H-polytope

$$
S^{*}=\{x \mid A x \leq 1\}
$$

- given a polytope S in V-representation, then one also has an H-representation of S^{*}
- since $S^{* *}=S$, if S is the polytope $\{x \mid A x \leq 1\}$ and $0 \in \operatorname{int}(S)$ then $S^{*}=\operatorname{co}\left\{a_{1}, \ldots, a_{m}\right\}$

converting between representations

we can use polarity to convert between representations
given an H-polytope S, we'd like to construct a V-representation

- construct the polar S^{*}
- it is a V-polytope
- construct the H-representation for S^{*} using Fourier-Motzkin
- construct $S=S^{* *}$, which is a V-polytope, as desired

projection is exponential

the polar of the cube is the crosspolytope

$$
C_{n}^{*}=\operatorname{co}\left\{e_{1},-e_{1}, \ldots, e_{n},-e_{n}\right\}
$$

with $2 n$ vertices and 2^{n} facets
this is the projection of

$$
\left\{(\lambda, x) \mid \lambda \geq 0, \lambda^{T} 1=1, x=A^{T} \lambda\right\}
$$

where the rows of A are $e_{1}^{T},-e_{1}^{T}, \ldots, e_{n}^{T},-e_{n}^{T}$.
in this case, projecting a polytope defined by $4 n+2$ inequalities from $3 n$ dimensions to n dimensions results in 2^{n} facets

computing with representations

we have

$$
y \in \mathbb{S}^{*} \quad \Longleftrightarrow \quad S \subset\left\{x \in \mathbb{R}^{n} \mid y^{T} x \leq 1\right\}
$$

hence testing membership for S^{*} is equivalent to testing halfspace containment of S
so we have two problems

- test membership of an H-polytope (or equivalently, test halfspace containment for a V-polytope)
- test membership of a V-polytope (or equivalently, test halfspace containment of an H-polytope)
the first is easy (just evaluation), the second is harder (an LP)

double description

recall Fourier-Motzkin projects an H-polytope onto $x_{1}=0$
i.e., it takes the vectors defining the facets, and constructs new valid inequalities with normal vectors c having $c_{1}=0$
the vectors a_{1}, \ldots, a_{m} defining the facets of S also define (after normalization) the vertices of S^{*}
applying FM gives new vertices c with $c_{1}=0$
one can show that FM constructs the intersection of a V-polytope with $x_{1}=0$
this is called the double description method

double description

the algorithm is simple:
for each pairs of vertices, one in $x_{1}<0$, the other in $x_{1}>0$, find the intersection with $x_{1}=0$ of the line segment joining them
these new points, together with any points in the original vertex set in $x_{1}=0$, give a V representation of $S \cap\left\{x \mid x_{1}=0\right\}$

of course, numerically this is the same algorithm as Fourier-Motzkin

polytopes and combinatorial optimization

recall the MAXCUT problem

$$
\begin{aligned}
\text { maximize } & \operatorname{trace}(Q X) \\
\text { subject to } & \operatorname{diag} X=1 \\
& \operatorname{rank}(X)=1 \\
& X \succeq 0
\end{aligned}
$$

the cut polytope is the set

$$
\begin{aligned}
C & =\operatorname{co}\left\{X \in \mathbb{S}^{n} \mid X=v v^{T}, v \in\{-1,1\}^{n}\right\} \\
& =\operatorname{co}\left\{X \in \mathbb{S}^{n} \mid \operatorname{rank}(X)=1, \operatorname{diag}(X)=1, X \succeq 0\right\}
\end{aligned}
$$

- maximizing trace $Q X$ over $X \in C$ gives exactly the MAXCUT value
- this is equivalent to a linear program

MAXCUT

Although we can formulate MAXCUT as an LP, both the V-representation and the H-representation are exponential in the number of vertices

- e.g., for $n=7$, the cut polytope has 116,764 facets for $n=8$, there are approx. 217, 000, 000 facets
note that this does not necessarily imply that the problem is hard; there are combinatorial problems for which, even though the polytope has an exponential number of facets, there is a polynomial-time separation oracle
also several families of valid linear inequalities are known, e.g., the triangle inequalities which give LP relaxations of MAXCUT

polytopes for combinatorial problems

there are integer programming formulations of many combinatorial problems e.g., TSP, 8 nodes gives a 20 dimensional polytope with 194,187 facets and 2520 vertices
but projecting a polytope dramatically increases the number of facets
the key question: is the cut polytope the projection of some high-dimensional polytope with few facets
if so, then we can replace the original LP with a simpler LP in higher dimensions
this is called the problem of efficient representation of MAXCUT; since MAXCUT is NP-complete, such a representation is unlikely to be found

