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efficiency of Fourier-Motzkin elimination

if A has m rows, then after elimination of x1 we can have no more than⌊
m2

4

⌋
facets

I ifm/2 inequalities have a positive coefficient of x1, andm/2 have a negative
coefficient, then FM constructs exactly m2/4 new inequalities

I repeating this, eliminating d dimensions gives⌊
m

2

⌋2n
inequalities

I key question: how may are are redundant? i.e., does projection produce
exponentially more facets?
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representation of polytopes

we can represent a polytope in the following ways

I an intersection of halfspaces, called an H-
polytope

S =
{
x ∈ Rn | Ax ≤ b

}

I the convex hull of its vertices, called a V -
polytope

S = co
{
a1, . . . , am

}
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size of representations

in some cases, one representation is smaller than the other

I the n-cube
Cn =

{
x ∈ Rn | − 1 ≤ xi ≤ 1 for all i

}
has 2n facets, and 2n vertices

I the n-dimensional crosspolytope

C∗
n =

{
x ∈ Rn

∣∣ ∑
i

|xi| ≤ 1
}

= co { e1,−e1, . . . , en,−en }

has 2n vertices and 2n facets
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optimization problems

the optimization problem: given polytope S and c ∈ Rn, find x that solves

minimize cTx

subject to x ∈ S

or state that S = ∅

roughly speaking, an equivalent problem (via bisection search) is halfspace con-
tainment

given c ∈ Rn and γ ∈ R, is it true that

S ⊂
{
x ∈ Rn | cTx ≤ γ

}
if not, find x ∈ S such that cTx > γ
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membership problems

the membership problem: given polytope S and y ∈ Rn, decide if y ∈ S, and if
not find λ ∈ Rn such that

λT y > max {λTx | x ∈ S }

the membership problem is also called the separation problem
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problem solving using different representations

I V -polytope: optimization is easy; evaluate cTx at all vertices

for membership, we need to solve an LP; duality will give certificate of
infeasibility

I H-polytope: membership is easy; evaluate Ay − b
the certificate of infeasibility is just the violated inequality

the optimization is an LP
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converting between representations

suppose we are given a V -polytope

S = co
{
a1, . . . , am

}
=
{
ATλ | λ ≥ 0, λT 1 = 1

}
=
{
x | there exists λ such that λ ≥ 0, λT 1 = 1, x = ATλ

}

hence S is a projection onto λ = 0 of{
(λ, x)

∣∣ λ ≥ 0, λT 1 = 1, x = ATλ
}

so we can use Fourier-Motzkin!

to handle equality constraints, either use x ≥ ATλ and x ≤ ATλ, or use inference
rules with unsigned multipliers
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polytopes and duality

for S ⊂ Rn define the polar set

S∗ =
{
λ ∈ Rn | λTx ≤ 1 for all x ∈ S

}

I the polar of a polytope is a polytope

I facets of one correspond to vertices of the other
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polar sets
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polar sets
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properties of polar sets

I the polar S∗ depends on the position of S; it is not affine invariant

I 0 ∈ S∗ for any S

I P ⊂ Q implies that P ∗ ⊃ Q∗

I P ∗ is always convex, even if P is not convex

I if 0 ∈ P , then P = (P ∗)∗
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polarity and representations

suppose S is a V -polytope, and 0 ∈ int(S)

S = co
{
a1, . . . , am

}
⊂ Rn

=
{
ATλ | λ ≥ 0, 1Tλ = 1

}
then S∗ is the H-polytope

S∗ =
{
x | Ax ≤ 1

}

I given a polytope S in V -representation, then one also has an H-representation
of S∗

I since S∗∗ = S, if S is the polytope
{
x | Ax ≤ 1

}
and 0 ∈ int(S) then

S∗ = co
{
a1, . . . , am

}
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converting between representations

we can use polarity to convert between representations

given an H-polytope S, we’d like to construct a V -representation

I construct the polar S∗

I it is a V -polytope

I construct the H-representation for S∗ using Fourier-Motzkin

I construct S = S∗∗, which is a V -polytope, as desired
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projection is exponential

the polar of the cube is the crosspolytope

C∗
n = co { e1,−e1, . . . , en,−en }

with 2n vertices and 2n facets

this is the projection of{
(λ, x)

∣∣ λ ≥ 0, λT 1 = 1, x = ATλ
}

where the rows of A are eT1 ,−eT1 , . . . , eTn ,−eTn .

in this case, projecting a polytope defined by 4n+ 2 inequalities from 3n dimen-
sions to n dimensions results in 2n facets
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computing with representations

we have
y ∈ S∗ ⇐⇒ S ⊂

{
x ∈ Rn | yTx ≤ 1

}
hence testing membership for S∗ is equivalent to testing halfspace containment
of S

so we have two problems

I test membership of an H-polytope (or equivalently, test halfspace contain-
ment for a V -polytope)

I test membership of a V -polytope (or equivalently, test halfspace contain-
ment of an H-polytope)

the first is easy (just evaluation), the second is harder (an LP)
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double description

recall Fourier-Motzkin projects an H-polytope onto x1 = 0

i.e., it takes the vectors defining the facets, and constructs new valid inequalities
with normal vectors c having c1 = 0

the vectors a1, . . . , am defining the facets of S also define (after normalization)
the vertices of S∗

applying FM gives new vertices c with c1 = 0

one can show that FM constructs the intersection of a V -polytope with x1 = 0

this is called the double description method
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double description

the algorithm is simple:

for each pairs of vertices, one in x1 < 0, the other
in x1 > 0, find the intersection with x1 = 0 of
the line segment joining them

these new points, together with any points in
the original vertex set in x1 = 0, give a V -
representation of S ∩ {x|x1 = 0}

of course, numerically this is the same algorithm
as Fourier-Motzkin
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polytopes and combinatorial optimization

recall the MAXCUT problem

maximize trace(QX)

subject to diagX = 1

rank(X) = 1

X � 0

the cut polytope is the set

C = co
{
X ∈ Sn | X = vvT , v ∈ {−1, 1}n

}
= co

{
X ∈ Sn | rank(X) = 1, diag(X) = 1, X � 0

}

I maximizing traceQX over X ∈ C gives exactly the MAXCUT value

I this is equivalent to a linear program
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MAXCUT

Although we can formulate MAXCUT as an LP, both the V -representation and
the H-representation are exponential in the number of vertices

I e.g., for n = 7, the cut polytope has 116, 764 facets
for n = 8, there are approx. 217, 000, 000 facets

note that this does not necessarily imply that the problem is hard; there are
combinatorial problems for which, even though the polytope has an exponential
number of facets, there is a polynomial-time separation oracle

also several families of valid linear inequalities are known, e.g., the triangle in-
equalities which give LP relaxations of MAXCUT



21

polytopes for combinatorial problems

there are integer programming formulations of many combinatorial problems

e.g., TSP, 8 nodes gives a 20 dimensional polytope with 194, 187 facets and 2520
vertices

but projecting a polytope dramatically increases the number of facets

the key question: is the cut polytope the projection of some high-dimensional
polytope with few facets

if so, then we can replace the original LP with a simpler LP in higher dimensions

this is called the problem of efficient representation of MAXCUT; since MAXCUT
is NP-complete, such a representation is unlikely to be found


