EE464 More Groebner Bases

1

example

suppose $I = \text{ideal}\{f_1, f_2\}$, where

$$f_1 = x^2 + z^2 - 1$$
 $f_2 = x^2 + y^2 + z^2 - 2z - 3$

suppose $p = x^2 + \frac{1}{2}y^2z - z - 1$; we have $p \in I$ since

$$p = \left(-\frac{1}{2}z+1\right)f_1 + \left(\frac{1}{2}z\right)f_2$$

but if we divide p by (f_1, f_2) we find

$$p = 1 f_1 + 0 f_2 + r$$
 where $r = \frac{1}{2}y^2 z - z^2 - z$

why wasn't the remainder zero? because the terms of p and r are not divisible by either $\mathrm{lt}(f_1)$ or $\mathrm{lt}(f_2)$

example continued

 $\text{ if for every } p \in I, \\$

we can remove $\mathrm{lt}(p)$ by division by one of the f_i i.e., $\mathrm{lt}(f_i)$ divides $\mathrm{lt}(p)$

then we would have remainder r=0 for every $p\in I$

as we'll see, this is the key Groebner basis property

in this case we can easily show $\{f_1, f_2\}$ is not a Groebner basis for I; let

$$p = f_1 - f_2 = -y^2 + 2z - 2$$

then $p \in I$ but neither $lt(f_i)$ divides y^2

Groebner basis

4

the set of polynomials $\{g_1,\ldots,g_m\}\subset I$ is a Groebner basis for ideal I if and only if

for all $f \in I$ there is some *i* such that $lt(g_i)$ divides lt(f)

we'll show this is equivalent to our previous definition

example

suppose $I = ideal\{f_1, f_2\}$ where

$$f_1 = x^3 + 2x^2 - 5x + 2 \qquad f_2 = x^2 + 3x - 4$$

Is $\{f_1, f_2\}$ a Groebner basis for I?

No, because we can construct $p \in I$ whose leading term isn't divisible by either of the $\mathrm{lt}(f_i)$

cancel
$$x^3$$
 terms: $f_3 = xf_2 - f_1 = x^2 + x - 2$ is in I
cancel x^2 terms: $p = f_2 - f_3 = 2x - 2$

equivalence of Groebner basis conditions

suppose $\{g_1, \ldots, g_m\} \subset I$ form a Groebner basis for I, i.e., $ideal\{lt(I)\} = ideal\{lt(g_1), \ldots, lt(g_m)\}$

then

for all $f \in I$ there is some *i* such that $lt(g_i)$ divides lt(f)

because if $f \in I$, then $lt(f) \in lt(I)$ so by the assumption

 $\operatorname{lt}(f) \in \operatorname{ideal}\{\operatorname{lt}(g_1), \dots, \operatorname{lt}(g_m)\}\$

the RHS is a monomial ideal, so membership implies lt(f) is a multiple of one of the $lt(g_i)$

equivalence of Groebner basis conditions

suppose $\{g_1,\ldots,g_m\}\subset I$ and

for all $f \in I$ there is some *i* such that $lt(g_i)$ divides lt(f)

then $\{g_1, \ldots, g_m\} \subset I$ form a Groebner basis for I, i.e.,

$$\operatorname{ideal}\{\operatorname{lt}(I)\} = \operatorname{ideal}\{\operatorname{lt}(g_1), \ldots, \operatorname{lt}(g_m)\}$$

let $I_1 = \text{ideal}\{\text{lt}(I)\}$ and $I_2 = \text{ideal}\{\text{lt}(g_1), \dots, \text{lt}(g_m)\}$

first, we'll show $I_1 \subset I_2$

to see this, suppose $x^{\gamma} \in I_1$ then $x^{\gamma} = x^{\alpha} x^{\beta}$ for some $x^{\beta} \in \mathrm{lt}(I);$

this means $x^{\beta} = \operatorname{lt}(f)$ for some $f \in I$, so by the hypothesis it is divisible by some $\operatorname{lt}(g_i)$, hence so is x^{γ} , so $x^{\gamma} \in I_2$

equivalence of Groebner basis conditions

$$I_1 = \text{ideal}\{\text{lt}(I)\}$$
 and $I_2 = \text{ideal}\{\text{lt}(g_1), \dots, \text{lt}(g_m)\}$

now we'll show $I_2 \subset I_1$;

suppose $x^{\gamma} \in I_2$, then $x^{\gamma} = x^{\alpha} \operatorname{lt}(g_i)$ for some isince $g_i \in I$, we have $\operatorname{lt}(g_i) \in \operatorname{lt}(I)$ and so $x^{\gamma} \in I_1$ terminology

- ▶ the division algorithm for division of f by g_1, \ldots, g_m is also called *reduction*
- \blacktriangleright the remainder on division is called the *normal form* of f

cancellation

suppose $I = ideal\{g_1, \ldots, g_m\}$

this set of polynomials is not a Groebner basis for I if there is some $f \in I$ such that

$$\operatorname{lt}(f) \notin \operatorname{ideal}\{\operatorname{lt}(g_1), \dots, \operatorname{lt}(g_m)\}\$$

this can happen if the leading terms in a sum $h_1g_1 + \cdots + h_mg_m$ cancel **example**

in grlex order

$$g_1 = x^3 - 2xy$$
 $g_2 = x^2y - 2y^2 + x$

we have $-yg_1 + xg_2 = x^2$, so $x^2 \in \text{ideal}\{g_1, \dots, g_2\}$ but $\text{lt}(x^2) \notin \text{ideal}\{\text{lt}(g_1), \dots, \text{lt}(g_m)\}$

least common multiple

the *least common multiple* of monomials x^{α} and x^{β} is x^{γ} , where

 $\gamma_i = \max\{\alpha_i, \beta_i\}$ for all $i = 1, \dots, n$

for example, the LCM of x^5yz^2 and x^2y^3z is $x^5y^3z^2$

syzygy polynomials

for $f, g \in \mathbb{K}[x_1, \dots, x_n]$, define the syzygy polynomial (S-polynomial)

$$S(f,g) = \frac{x^{\gamma}}{\operatorname{lt}(f)}f - \frac{x^{\gamma}}{\operatorname{lt}(g)}g \qquad \quad \text{where } x^{\gamma} = \operatorname{lcm}\bigl(\operatorname{lm}(f),\operatorname{lm}(g)\bigr)$$

example

in grlex order

$$f = x^3y^2 - x^2y^3 + x \qquad g = 3x^4y + y^2$$

 ${\cal S}(f,g)$ is designed to cancel the leading terms of f and g

$$S(f,g) = xf - \frac{1}{3}yg$$
$$= -x^3 y^3 - \frac{y^3}{3} + x^2$$

cancellation and syzygy polynomials

suppose f_1, \ldots, f_m each have $\operatorname{multideg}(f_i) = \delta$, and $c_1, \ldots, c_m \in \mathbb{K}$

if the sum
$$h=\displaystyle{\sum_{i=1}^m}c_if_i$$
 has a cancellation, i.e.,

 $\operatorname{multideg}(h) < \max_{i} \operatorname{multideg}(f_i)$

then h is a linear combination of S-polynomials

$$h = \sum_{j,k} c_{jk} S(f_j, f_k)$$

that is, the only way cancellation can occur is in S-polynomials one can show this by rearranging the terms in h

example

given polynomials

$$f_1 = x^3y^2 + x$$
 $f_2 = 2x^3y^2 + y^2$ $f_3 = x^3y^2 - xy + x^2$

the linear combination has a cancellation

$$f_1 + f_3 - f_2 = x^2 - xy + x - y^2$$

so it is a sum of S-polynomials $s_{ij} = S(f_i, f_j)$

$$=2s_{12}-s_{13}$$

since

$$s_{12} = x - \frac{y^2}{2}$$
 $s_{13} = -x^2 + xy + x$ $s_{23} = -x^2 + xy + \frac{y^2}{2}$

computation of Groebner bases

the polynomials g_1, \ldots, g_m are a Groebner basis if

the remainder of $S(g_i, g_j)$ on division by (g_1, \ldots, g_m) is zero for all i, j

▶ this gives a *computational test* to check if g_1, \ldots, g_m are a Groebner basis

▶ to prove this, we'll show that if the above condition implies

for all $f \in I$ there is some *i* such that $lt(g_i)$ divides lt(f)

16

we can write any $f \in I$ in terms of the generators

$$f = \sum_{i} h_i g_i$$

we need to prove that there is some i such that $lt(g_i)$ divides lt(f); this holds if

$$\operatorname{multideg}(f) = \max_{i} \operatorname{multideg}(h_i g_i)$$

proof by contradiction; suppose it does not hold; i.e.,

 $\operatorname{multideg}(f) < \max_{i} \operatorname{multideg}(h_i g_i)$

for all choices of the h_i such that $f = \sum h_i g_i$

from all choices of h such that $f=\sum h_i g_i,$ let δ be the minimum of the max multidegrees

$$\delta = \min_{h} \max_{i} \text{ multideg}(h_i g_i)$$

and let h_1, \ldots, h_m achieve this, so we have

$$f = \sum_{i} h_i g_i$$
 and $\max_{i} \operatorname{multideg}(h_i g_i) = \delta$

for proof by contradiction, assume $\mathrm{multideg}(f) < \delta$

we'll show that this contradicts the choice of δ as minimal; i.e, we can find \tilde{h}_i such that

$$f = \sum_i \tilde{h}_i g_i$$
 and $\max_i \operatorname{multideg}(\tilde{h}_i g_i) < \delta$

write f as a sum of terms in which cancellation occurs

$$f = \sum_{i} \operatorname{lt}(h_i)g_i + \text{ terms of lower multidegree}$$

each term in the sum has $\operatorname{multideg}(\operatorname{lt}(h_i)g_i) = \delta$, so from the previous result the sum is a linear combination of S-polynomials

$$f = \sum_{j,k} d_{jk} S(\operatorname{lt}(h_j)g_j, \operatorname{lt}(h_k)g_k) + \text{ terms of lower multidegree}$$

each S-poly has multideg $< \delta$, and is a multiple of an S-poly of the g_i

$$S(\operatorname{lt}(h_j)g_j,\operatorname{lt}(h_k)g_k) = p_{jk}S(g_j,g_k)$$

by assumption, each S-poly of the g_i is divisible by the g_i , so

$$S(g_j, g_k) = \sum_i q_{ijk} g_i$$

by the division algorithm, the terms satisfy

$$\operatorname{multideg}(q_{ijk}g_i) \leq \operatorname{multideg} S(g_j, g_k)$$

and since $\operatorname{multideg}(pq) \leq \operatorname{multideg}(p) \operatorname{multideg}(q)$

$$\text{multideg}(p_{jk}q_{ijk}g_i) \leq \text{multideg}\Big(S\big(\text{lt}(h_j)g_j,\text{lt}(h_k)g_k\big)\Big) \\ < \delta$$

now we have a basis expansion for f

$$\begin{split} f &= \sum_{i,j,k} d_{jk} p_{jk} q_{ijk} g_i + \text{ terms of lower multidegree} \\ &= \sum_i \tilde{h}_i g_i + \text{ terms of lower multidegree} \end{split}$$

and each term has $\operatorname{multideg}(\tilde{h}_i q_i) < \delta$,

as required, this contradicts the assumption that δ was minimal

this proves the result

the Buchberger algorithm

given f_1, \ldots, f_m , the following algorithm constructs a Groebner basis for $deal\{f_1, \ldots, f_m\}$

$$G=\{f_1,\ldots,f_m\}$$
 repeat for each pair $f_i,f_j\in G,$ divide $S(f_i,f_j)$ by G if any remainder $r_{ij}\neq 0$
$$G=G\cup\{r_{ij}\}$$

until all remainders are zero

example

we'd like to find a Groebner basis for $I = ideal\{f_1, f_2\}$ using grlex order

$$f_1 = x^3 - 2xy \qquad f_2 = x^2y - 2y^2 + x$$

we find $S(f_1,f_2)=-x^2$; remainder on division of $S(f_1,f_2)$ by $\{f_1,f_2\}$ is $-x^2$; call this f_3

now we have $G = \{f_1, f_2, f_3\}$ we find $S(f_1, f_3) = -2xy$ remainder on division of $S(f_1, f_3)$ by G is -2xy; call this f_4

example, continued

now we have $G = \{f_1, f_2, f_3, f_4\}$ we find $S(f_1, f_4) = -2xy^2$ remainder on division of $S(f_1, f_4)$ by G is 0; ignore it

we find $S(f_2,f_3)=-2y^2+x$ remainder on division $S(f_2,f_3)$ by G is $-2y^2+x$; call it f_5

now we have $G = \{f_1, f_2, f_3, f_4, f_5\}$

we find the remainder on division of $S(f_i,f_j)$ by G is zero for all i,j algorithm terminates

$$G = \{f_1, f_2, f_3, f_4, f_5\}$$
 is a Groebner basis for I

notes on Buchberger algorithm

- at each step, the candidate basis grows
- the final basis may contain redundant polynomials; we'll see how to remove these
- we still need to show that the algorithm always terminates; we'll do this via the ascending chain condition

ascending chains

a sequence of ideals I_1, I_2, I_3, \ldots is called an *ascending chain* if

 $I_1 \subset I_2 \subset I_3$

we say this chain *stabilizes* if for some N

$$I_N = I_{N+1} = I_{N+2} = \cdots$$

the ascending chain condition

every ascending chain of ideals in $\mathbb{K}[x_1,\ldots,x_n]$ stabilizes

this holds because, if we define

$$I = \bigcup_{i=1}^{\infty} I_i$$

then I is an ideal, so it is finitely generated, by say $\{f_1, \ldots, f_m\} \in I$

pick N sufficiently large that $\{f_1,\ldots,f_m\}\subset I_N$, then

$$I_k = I_N$$
 for all $k \ge N$

termination of the Buchberger algorithm

the algorithm generates an ascending chain

$$\operatorname{ideal}\{\operatorname{lt}(G_1)\}\subset\operatorname{ideal}\{\operatorname{lt}(G_2)\}\subset\operatorname{ideal}\{\operatorname{lt}(G_3)\}\subset\cdots$$

which therefore stabilizes

remains to show that the set of basis functions stops growing

we'll show that if $G_k \neq G_{k+1}$ then $ideal\{lt(G_k)\} \neq ideal\{lt(G_{k+1})\}$ to see this, suppose r is the non-zero remainder of an S-poly, and

$$G_{k+1} = G_k \cup \{r\}$$

since r is a remainder on division, it is not divisible by any element of $lt(G_k)$, so

 $\operatorname{lt}(r) \notin \operatorname{ideal}\{\operatorname{lt}(G_k)\}\$

minimal Groebner bases

suppose $G = \{g_1, \ldots, g_m\}$ is a Groebner basis;

we can remove polynomial g_i , leaving $G \setminus \{g_i\}$ a Groebner basis, if

 $lt(g_i)$ is divisible by $lt(g_j)$ for some $j \neq i$

this holds because removing g_i does not change the monomial ideal

 $\operatorname{ideal}\{\operatorname{lt}(G)\}$

a Groebner basis where all such redundant polynomials have been removed is called *minimal*

example

the following polynomials are a Groebner basis w.r.t. grlex order

$$f_1 = x^3 - 2xy \qquad f_2 = x^2y - 2y^2 + x \qquad f_3 = -x^2 \\ f_4 = -2xy \qquad f_5 = -2y^2 + x \\$$

since
$$\operatorname{lt}(f_1) = -x \operatorname{lt}(f_3)$$
, we can remove f_1
since $\operatorname{lt}(f_2) = -\frac{1}{2}x \operatorname{lt}(f_4)$, we can remove f_2

so a minimal Groebner basis is $\{f_3, f_4, f_5\}$

it is not unique; e.g., we can replace f_3 by $f_3 + cf_4$ for any $c \in \mathbb{K}$

reduced Groebner bases

suppose $G=\{g_1,\ldots,g_m\}$ is a minimal Groebner basis; we can normalize each element as follows

replace g_i by the remainder on dividing g_i by $G \setminus \{g_i\}$

if each element is monic, and normalized as above, then G is called a $\ensuremath{\textit{reduced}}$ Groebner basis

for a given ideal and monomial ordering, it is unique

for the previous example, we have the reduced Groebner basis

$$g_1 = x^2$$
 $g_2 = xy$ $g_3 = y^2 - \frac{1}{2}x$

example: linear equations

consider the system of linear equations

$$3x - 6y - 2z = 0$$

$$2x - 4y + 4w = 0$$
 which is
$$\begin{bmatrix} 3 & -6 & -2 & 0 \\ 2 & -4 & 0 & 4 \\ 1 & -2 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0$$

the Buchberger algorithm gives the reduced Groebner basis

$$\begin{bmatrix} 1 & -2 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0$$

i.e., it performs Gaussian elimination to reduced row echelon form

properties of the Buchberger algorithm

- again, it's linear algebra in disguise
- \blacktriangleright for polynomials in one variable, the Buchberger algorithm returns the gcd of f_1,\ldots,f_m
- for linear polynomials, the Buchberger algorithm performs Gaussian elimination
- many refinements of the algorithm are possible to achieve faster performance