## EE464 More Groebner Bases

## example

suppose $I=\operatorname{ideal}\left\{f_{1}, f_{2}\right\}$, where

$$
f_{1}=x^{2}+z^{2}-1 \quad f_{2}=x^{2}+y^{2}+z^{2}-2 z-3
$$

suppose $p=x^{2}+\frac{1}{2} y^{2} z-z-1$; we have $p \in I$ since

$$
p=\left(-\frac{1}{2} z+1\right) f_{1}+\left(\frac{1}{2} z\right) f_{2}
$$

but if we divide $p$ by $\left(f_{1}, f_{2}\right)$ we find

$$
p=1 f_{1}+0 f_{2}+r \quad \text { where } r=\frac{1}{2} y^{2} z-z^{2}-z
$$

why wasn't the remainder zero? because the terms of $p$ and $r$ are not divisible by either $\operatorname{lt}\left(f_{1}\right)$ or $\operatorname{lt}\left(f_{2}\right)$

## example continued

if for every $p \in I$,
we can remove $\operatorname{lt}(p)$ by division by one of the $f_{i}$ i.e., $\operatorname{lt}\left(f_{i}\right)$ divides $\operatorname{lt}(p)$
then we would have remainder $r=0$ for every $p \in I$ as we'll see, this is the key Groebner basis property
in this case we can easily show $\left\{f_{1}, f_{2}\right\}$ is not a Groebner basis for $I$; let

$$
p=f_{1}-f_{2}=-y^{2}+2 z-2
$$

then $p \in I$ but neither $\operatorname{lt}\left(f_{i}\right)$ divides $y^{2}$

## Groebner basis

the set of polynomials $\left\{g_{1}, \ldots, g_{m}\right\} \subset I$ is a Groebner basis for ideal $I$ if and only if

$$
\text { for all } f \in I \quad \text { there is some } i \text { such that } \operatorname{lt}\left(g_{i}\right) \text { divides } \operatorname{lt}(f)
$$

we'll show this is equivalent to our previous definition

## example

suppose $I=\operatorname{ideal}\left\{f_{1}, f_{2}\right\}$ where

$$
f_{1}=x^{3}+2 x^{2}-5 x+2 \quad f_{2}=x^{2}+3 x-4
$$

Is $\left\{f_{1}, f_{2}\right\}$ a Groebner basis for $I$ ?

No, because we can construct $p \in I$ whose leading term isn't divisible by either of the $\operatorname{lt}\left(f_{i}\right)$

$$
\begin{array}{ll}
\text { cancel } x^{3} \text { terms: } & f_{3}=x f_{2}-f_{1}=x^{2}+x-2 \text { is in } I \\
\text { cancel } x^{2} \text { terms: } & p=f_{2}-f_{3}=2 x-2
\end{array}
$$

## equivalence of Groebner basis conditions

suppose $\left\{g_{1}, \ldots, g_{m}\right\} \subset I$ form a Groebner basis for $I$, i.e.,

$$
\text { ideal }\{\operatorname{lt}(I)\}=\operatorname{ideal}\left\{\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)\right\}
$$

then
for all $f \in I \quad$ there is some $i$ such that $\operatorname{lt}\left(g_{i}\right)$ divides $\operatorname{lt}(f)$
because if $f \in I$, then $\operatorname{lt}(f) \in \operatorname{lt}(I)$ so by the assumption

$$
\operatorname{lt}(f) \in \operatorname{ideal}\left\{\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)\right\}
$$

the RHS is a monomial ideal, so membership implies $\operatorname{lt}(f)$ is a multiple of one of the $\operatorname{lt}\left(g_{i}\right)$

## equivalence of Groebner basis conditions

suppose $\left\{g_{1}, \ldots, g_{m}\right\} \subset I$ and
for all $f \in I \quad$ there is some $i$ such that $\operatorname{lt}\left(g_{i}\right)$ divides $\operatorname{lt}(f)$
then $\left\{g_{1}, \ldots, g_{m}\right\} \subset I$ form a Groebner basis for $I$, i.e.,

$$
\operatorname{ideal}\{\operatorname{lt}(I)\}=\operatorname{ideal}\left\{\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)\right\}
$$

let $I_{1}=\operatorname{ideal}\{\operatorname{lt}(I)\}$ and $I_{2}=\operatorname{ideal}\left\{\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)\right\}$
first, we'll show $I_{1} \subset I_{2}$
to see this, suppose $x^{\gamma} \in I_{1}$ then $x^{\gamma}=x^{\alpha} x^{\beta}$ for some $x^{\beta} \in \operatorname{lt}(I)$;
this means $x^{\beta}=\operatorname{lt}(f)$ for some $f \in I$, so by the hypothesis it is divisible by some $\operatorname{lt}\left(g_{i}\right)$, hence so is $x^{\gamma}$, so $x^{\gamma} \in I_{2}$

## equivalence of Groebner basis conditions

$$
I_{1}=\operatorname{ideal}\{\operatorname{lt}(I)\} \text { and } I_{2}=\operatorname{ideal}\left\{\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)\right\}
$$

now we'll show $I_{2} \subset I_{1}$;
suppose $x^{\gamma} \in I_{2}$, then $x^{\gamma}=x^{\alpha} \operatorname{lt}\left(g_{i}\right)$ for some $i$
since $g_{i} \in I$, we have $\operatorname{lt}\left(g_{i}\right) \in \operatorname{lt}(I)$ and so $x^{\gamma} \in I_{1}$

## terminology

- the division algorithm for division of $f$ by $g_{1}, \ldots, g_{m}$ is also called reduction
- the remainder on division is called the normal form of $f$


## cancellation

suppose $I=\operatorname{ideal}\left\{g_{1}, \ldots, g_{m}\right\}$
this set of polynomials is not a Groebner basis for $I$ if there is some $f \in I$ such that

$$
\operatorname{lt}(f) \notin \operatorname{ideal}\left\{\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)\right\}
$$

this can happen if the leading terms in a sum $h_{1} g_{1}+\cdots+h_{m} g_{m}$ cancel example
in grlex order

$$
g_{1}=x^{3}-2 x y \quad g_{2}=x^{2} y-2 y^{2}+x
$$

we have $-y g_{1}+x g_{2}=x^{2}$, so $x^{2} \in \operatorname{ideal}\left\{g_{1}, \ldots, g_{2}\right\}$
but $\operatorname{lt}\left(x^{2}\right) \notin \operatorname{ideal}\left\{\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{m}\right)\right\}$

## least common multiple

the least common multiple of monomials $x^{\alpha}$ and $x^{\beta}$ is $x^{\gamma}$, where

$$
\gamma_{i}=\max \left\{\alpha_{i}, \beta_{i}\right\} \quad \text { for all } i=1, \ldots, n
$$

for example, the LCM of $x^{5} y z^{2}$ and $x^{2} y^{3} z$ is $x^{5} y^{3} z^{2}$

## syzygy polynomials

for $f, g \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, define the syzygy polynomial (S-polynomial)

$$
S(f, g)=\frac{x^{\gamma}}{\operatorname{lt}(f)} f-\frac{x^{\gamma}}{\operatorname{lt}(g)} g \quad \text { where } x^{\gamma}=\operatorname{lcm}(\operatorname{lm}(f), \operatorname{lm}(g))
$$

## example

in grlex order

$$
f=x^{3} y^{2}-x^{2} y^{3}+x \quad g=3 x^{4} y+y^{2}
$$

$S(f, g)$ is designed to cancel the leading terms of $f$ and $g$

$$
\begin{aligned}
S(f, g) & =x f-\frac{1}{3} y g \\
& =-x^{3} y^{3}-\frac{y^{3}}{3}+x^{2}
\end{aligned}
$$

## cancellation and syzygy polynomials

suppose $f_{1}, \ldots, f_{m}$ each have $\operatorname{multideg}\left(f_{i}\right)=\delta$, and $c_{1}, \ldots, c_{m} \in \mathbb{K}$
if the sum $h=\sum_{i=1}^{m} c_{i} f_{i}$ has a cancellation, i.e.,

$$
\operatorname{multideg}(h)<\max _{i} \operatorname{multideg}\left(f_{i}\right)
$$

then $h$ is a linear combination of $S$-polynomials

$$
h=\sum_{j, k} c_{j k} S\left(f_{j}, f_{k}\right)
$$

that is, the only way cancellation can occur is in $S$-polynomials one can show this by rearranging the terms in $h$

## example

given polynomials

$$
f_{1}=x^{3} y^{2}+x \quad f_{2}=2 x^{3} y^{2}+y^{2} \quad f_{3}=x^{3} y^{2}-x y+x^{2}
$$

the linear combination has a cancellation

$$
f_{1}+f_{3}-f_{2}=x^{2}-x y+x-y^{2}
$$

so it is a sum of $S$-polynomials $s_{i j}=S\left(f_{i}, f_{j}\right)$

$$
=2 s_{12}-s_{13}
$$

since

$$
s_{12}=x-\frac{y^{2}}{2} \quad s_{13}=-x^{2}+x y+x \quad s_{23}=-x^{2}+x y+\frac{y^{2}}{2}
$$

## computation of Groebner bases

the polynomials $g_{1}, \ldots, g_{m}$ are a Groebner basis if

$$
\text { the remainder of } S\left(g_{i}, g_{j}\right) \text { on division by }\left(g_{1}, \ldots, g_{m}\right) \text { is zero for all } i, j
$$

- this gives a computational test to check if $g_{1}, \ldots, g_{m}$ are a Groebner basis
- to prove this, we'll show that if the above condition implies for all $f \in I \quad$ there is some $i$ such that $\operatorname{lt}\left(g_{i}\right)$ divides $\operatorname{lt}(f)$


## proof

we can write any $f \in I$ in terms of the generators

$$
f=\sum_{i} h_{i} g_{i}
$$

we need to prove that there is some $i$ such that $\operatorname{lt}\left(g_{i}\right)$ divides $\operatorname{lt}(f)$; this holds if

$$
\operatorname{multideg}(f)=\max _{i} \operatorname{multideg}\left(h_{i} g_{i}\right)
$$

proof by contradiction; suppose it does not hold; i.e.,

$$
\operatorname{multideg}(f)<\max _{i} \text { multideg }\left(h_{i} g_{i}\right)
$$

for all choices of the $h_{i}$ such that $f=\sum h_{i} g_{i}$
from all choices of $h$ such that $f=\sum h_{i} g_{i}$, let $\delta$ be the minimum of the max multidegrees

$$
\delta=\min _{h} \max _{i} \text { multideg }\left(h_{i} g_{i}\right)
$$

and let $h_{1}, \ldots, h_{m}$ achieve this, so we have

$$
f=\sum_{i} h_{i} g_{i} \quad \text { and } \quad \max _{i} \operatorname{multideg}\left(h_{i} g_{i}\right)=\delta
$$

for proof by contradiction, assume multideg $(f)<\delta$
we'll show that this contradicts the choice of $\delta$ as minimal; i.e, we can find $\tilde{h}_{i}$ such that

$$
f=\sum_{i} \tilde{h}_{i} g_{i} \quad \text { and } \quad \max _{i} \operatorname{multideg}\left(\tilde{h}_{i} g_{i}\right)<\delta
$$

write $f$ as a sum of terms in which cancellation occurs

$$
f=\sum_{i} \operatorname{lt}\left(h_{i}\right) g_{i}+\text { terms of lower multidegree }
$$

each term in the sum has multideg $\left(\operatorname{lt}\left(h_{i}\right) g_{i}\right)=\delta$, so from the previous result the sum is a linear combination of $S$-polynomials

$$
f=\sum_{j, k} d_{j k} S\left(\operatorname{lt}\left(h_{j}\right) g_{j}, \operatorname{lt}\left(h_{k}\right) g_{k}\right)+\text { terms of lower multidegree }
$$

each $S$-poly has multideg $<\delta$, and is a multiple of an $S$-poly of the $g_{i}$

$$
S\left(\operatorname{lt}\left(h_{j}\right) g_{j}, \operatorname{lt}\left(h_{k}\right) g_{k}\right)=p_{j k} S\left(g_{j}, g_{k}\right)
$$

by assumption, each $S$-poly of the $g_{i}$ is divisible by the $g_{i}$, so

$$
S\left(g_{j}, g_{k}\right)=\sum_{i} q_{i j k} g_{i}
$$

by the division algorithm, the terms satisfy

$$
\operatorname{multideg}\left(q_{i j k} g_{i}\right) \leq \operatorname{multideg} S\left(g_{j}, g_{k}\right)
$$

and since multideg $(p q) \leq \operatorname{multideg}(p)$ multideg $(q)$

$$
\begin{aligned}
\operatorname{multideg}\left(p_{j k} q_{i j k} g_{i}\right) & \leq \operatorname{multideg}\left(S\left(\operatorname{lt}\left(h_{j}\right) g_{j}, \operatorname{lt}\left(h_{k}\right) g_{k}\right)\right) \\
& <\delta
\end{aligned}
$$

now we have a basis expansion for $f$

$$
\begin{aligned}
f & =\sum_{i, j, k} d_{j k} p_{j k} q_{i j k} g_{i}+\text { terms of lower multidegree } \\
& =\sum_{i} \tilde{h}_{i} g_{i}+\text { terms of lower multidegree }
\end{aligned}
$$

and each term has multideg $\left(\tilde{h}_{i} q_{i}\right)<\delta$,
as required, this contradicts the assumption that $\delta$ was minimal
this proves the result

## the Buchberger algorithm

given $f_{1}, \ldots, f_{m}$, the following algorithm constructs a Groebner basis for ideal $\left\{f_{1}, \ldots\right.$
$G=\left\{f_{1}, \ldots, f_{m}\right\}$
repeat
for each pair $f_{i}, f_{j} \in G$, divide $S\left(f_{i}, f_{j}\right)$ by $G$
if any remainder $r_{i j} \neq 0$

$$
G=G \cup\left\{r_{i j}\right\}
$$

until all remainders are zero

## example

we'd like to find a Groebner basis for $I=\operatorname{ideal}\left\{f_{1}, f_{2}\right\}$ using grlex order

$$
f_{1}=x^{3}-2 x y \quad f_{2}=x^{2} y-2 y^{2}+x
$$

we find $S\left(f_{1}, f_{2}\right)=-x^{2}$;
remainder on division of $S\left(f_{1}, f_{2}\right)$ by $\left\{f_{1}, f_{2}\right\}$ is $-x^{2}$; call this $f_{3}$
now we have $G=\left\{f_{1}, f_{2}, f_{3}\right\}$ we find $S\left(f_{1}, f_{3}\right)=-2 x y$
remainder on division of $S\left(f_{1}, f_{3}\right)$ by $G$ is $-2 x y$; call this $f_{4}$

## example, continued

now we have $G=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ we find $S\left(f_{1}, f_{4}\right)=-2 x y^{2}$
remainder on division of $S\left(f_{1}, f_{4}\right)$ by $G$ is 0 ; ignore it
we find $S\left(f_{2}, f_{3}\right)=-2 y^{2}+x$
remainder on division $S\left(f_{2}, f_{3}\right)$ by $G$ is $-2 y^{2}+x$; call it $f_{5}$
now we have $G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$
we find the remainder on division of $S\left(f_{i}, f_{j}\right)$ by $G$ is zero for all $i, j$ algorithm terminates
$G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ is a Groebner basis for $I$

## notes on Buchberger algorithm

- at each step, the candidate basis grows
- the final basis may contain redundant polynomials; we'll see how to remove these
- we still need to show that the algorithm always terminates; we'll do this via the ascending chain condition


## ascending chains

a sequence of ideals $I_{1}, I_{2}, I_{3}, \ldots$ is called an ascending chain if

$$
I_{1} \subset I_{2} \subset I_{3}
$$

we say this chain stabilizes if for some $N$

$$
I_{N}=I_{N+1}=I_{N+2}=\cdots
$$

the ascending chain condition

## every ascending chain of ideals in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ stabilizes

this holds because, if we define

$$
I=\bigcup_{i=1}^{\infty} I_{i}
$$

then $I$ is an ideal, so it is finitely generated, by say $\left\{f_{1}, \ldots, f_{m}\right\} \in I$
pick $N$ sufficiently large that $\left\{f_{1}, \ldots, f_{m}\right\} \subset I_{N}$, then

$$
I_{k}=I_{N} \quad \text { for all } k \geq N
$$

## termination of the Buchberger algorithm

the algorithm generates an ascending chain

$$
\text { ideal }\left\{\operatorname{lt}\left(G_{1}\right)\right\} \subset \operatorname{ideal}\left\{\operatorname{lt}\left(G_{2}\right)\right\} \subset \operatorname{ideal}\left\{\operatorname{lt}\left(G_{3}\right)\right\} \subset \cdots
$$

which therefore stabilizes
remains to show that the set of basis functions stops growing
we'll show that if $G_{k} \neq G_{k+1}$ then ideal $\left\{\operatorname{lt}\left(G_{k}\right)\right\} \neq \operatorname{ideal}\left\{\operatorname{lt}\left(G_{k+1}\right)\right\}$ to see this, suppose $r$ is the non-zero remainder of an $S$-poly, and

$$
G_{k+1}=G_{k} \cup\{r\}
$$

since $r$ is a remainder on division, it is not divisible by any element of $\operatorname{lt}\left(G_{k}\right)$, so

$$
\operatorname{lt}(r) \notin \operatorname{ideal}\left\{\operatorname{lt}\left(G_{k}\right)\right\}
$$

## minimal Groebner bases

suppose $G=\left\{g_{1}, \ldots, g_{m}\right\}$ is a Groebner basis;
we can remove polynomial $g_{i}$, leaving $G \backslash\left\{g_{i}\right\}$ a Groebner basis, if

$$
\operatorname{lt}\left(g_{i}\right) \text { is divisible by } \operatorname{lt}\left(g_{j}\right) \text { for some } j \neq i
$$

this holds because removing $g_{i}$ does not change the monomial ideal

$$
\text { ideal }\{\operatorname{lt}(G)\}
$$

a Groebner basis where all such redundant polynomials have been removed is called minimal

## example

the following polynomials are a Groebner basis w.r.t. grlex order

$$
\begin{array}{lll}
f_{1}=x^{3}-2 x y & f_{2}=x^{2} y-2 y^{2}+x & f_{3}=-x^{2} \\
f_{4}=-2 x y & f_{5}=-2 y^{2}+x &
\end{array}
$$

since $\operatorname{lt}\left(f_{1}\right)=-x \operatorname{lt}\left(f_{3}\right)$, we can remove $f_{1}$
since $\operatorname{lt}\left(f_{2}\right)=-\frac{1}{2} x \operatorname{lt}\left(f_{4}\right)$, we can remove $f_{2}$
so a minimal Groebner basis is $\left\{f_{3}, f_{4}, f_{5}\right\}$
it is not unique; e.g., we can replace $f_{3}$ by $f_{3}+c f_{4}$ for any $c \in \mathbb{K}$

## reduced Groebner bases

suppose $G=\left\{g_{1}, \ldots, g_{m}\right\}$ is a minimal Groebner basis; we can normalize each element as follows

$$
\text { replace } g_{i} \text { by the remainder on dividing } g_{i} \text { by } G \backslash\left\{g_{i}\right\}
$$

if each element is monic, and normalized as above, then $G$ is called a reduced Groebner basis
for a given ideal and monomial ordering, it is unique for the previous example, we have the reduced Groebner basis

$$
g_{1}=x^{2} \quad g_{2}=x y \quad g_{3}=y^{2}-\frac{1}{2} x
$$

## example: linear equations

consider the system of linear equations

$$
\begin{array}{r}
3 x-6 y-2 z=0 \\
2 x-4 y+4 w=0 \\
x-2 y-z-w=0
\end{array} \quad \text { which is } \quad\left[\begin{array}{rrrr}
3 & -6 & -2 & 0 \\
2 & -4 & 0 & 4 \\
1 & -2 & -1 & -1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=0
$$

the Buchberger algorithm gives the reduced Groebner basis

$$
\left[\begin{array}{rrrr}
1 & -2 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=0
$$

i.e., it performs Gaussian elimination to reduced row echelon form

## properties of the Buchberger algorithm

- again, it's linear algebra in disguise
- for polynomials in one variable, the Buchberger algorithm returns the gcd of $f_{1}, \ldots, f_{m}$
- for linear polynomials, the Buchberger algorithm performs Gaussian elimination
- many refinements of the algorithm are possible to achieve faster performance

