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EE464 More Groebner Bases
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example

suppose I = ideal{f1, f2}, where

f1 = x2 + z2 − 1 f2 = x2 + y2 + z2 − 2z − 3

suppose p = x2 + 1
2y

2z − z − 1; we have p ∈ I since

p =

(
−1

2
z + 1

)
f1 +

(
1

2
z

)
f2

but if we divide p by (f1, f2) we find

p = 1 f1 + 0 f2 + r where r =
1

2
y2z − z2 − z

why wasn’t the remainder zero? because the terms of p and r are not divisible
by either lt(f1) or lt(f2)
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example continued

if for every p ∈ I,

we can remove lt(p) by division by one of the fi

i.e., lt(fi) divides lt(p)

then we would have remainder r = 0 for every p ∈ I
as we’ll see, this is the key Groebner basis property

in this case we can easily show {f1, f2} is not a Groebner basis for I; let

p = f1 − f2 = −y2 + 2z − 2

then p ∈ I but neither lt(fi) divides y2
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Groebner basis

the set of polynomials {g1, . . . , gm} ⊂ I is a Groebner basis for ideal I if and
only if

for all f ∈ I there is some i such that lt(gi) divides lt(f)

we’ll show this is equivalent to our previous definition
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example

suppose I = ideal{f1, f2} where

f1 = x3 + 2x2 − 5x+ 2 f2 = x2 + 3x− 4

Is {f1, f2} a Groebner basis for I?

No, because we can construct p ∈ I whose leading term isn’t divisible by either
of the lt(fi)

cancel x3 terms: f3 = xf2 − f1 = x2 + x− 2 is in I

cancel x2 terms: p = f2 − f3 = 2x− 2
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equivalence of Groebner basis conditions

suppose {g1, . . . , gm} ⊂ I form a Groebner basis for I, i.e.,

ideal{lt(I)} = ideal{lt(g1), . . . , lt(gm)}

then

for all f ∈ I there is some i such that lt(gi) divides lt(f)

because if f ∈ I, then lt(f) ∈ lt(I) so by the assumption

lt(f) ∈ ideal{lt(g1), . . . , lt(gm)}

the RHS is a monomial ideal, so membership implies lt(f) is a multiple of one of
the lt(gi)
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equivalence of Groebner basis conditions

suppose {g1, . . . , gm} ⊂ I and

for all f ∈ I there is some i such that lt(gi) divides lt(f)

then {g1, . . . , gm} ⊂ I form a Groebner basis for I, i.e.,

ideal{lt(I)} = ideal{lt(g1), . . . , lt(gm)}

let I1 = ideal{lt(I)} and I2 = ideal{lt(g1), . . . , lt(gm)}

first, we’ll show I1 ⊂ I2

to see this, suppose xγ ∈ I1 then xγ = xαxβ for some xβ ∈ lt(I);

this means xβ = lt(f) for some f ∈ I, so by the hypothesis it is divisible by some
lt(gi), hence so is xγ , so xγ ∈ I2



8

equivalence of Groebner basis conditions

I1 = ideal{lt(I)} and I2 = ideal{lt(g1), . . . , lt(gm)}

now we’ll show I2 ⊂ I1;

suppose xγ ∈ I2, then xγ = xα lt(gi) for some i

since gi ∈ I, we have lt(gi) ∈ lt(I) and so xγ ∈ I1
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terminology

I the division algorithm for division of f by g1, . . . , gm is also called reduction

I the remainder on division is called the normal form of f
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cancellation

suppose I = ideal{g1, . . . , gm}

this set of polynomials is not a Groebner basis for I if there is some f ∈ I such
that

lt(f) 6∈ ideal{lt(g1), . . . , lt(gm)}

this can happen if the leading terms in a sum h1g1 + · · ·+ hmgm cancel

example

in grlex order
g1 = x3 − 2xy g2 = x2y − 2y2 + x

we have −yg1 + xg2 = x2, so x2 ∈ ideal{g1, . . . , g2}

but lt(x2) 6∈ ideal{lt(g1), . . . , lt(gm)}
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least common multiple

the least common multiple of monomials xα and xβ is xγ , where

γi = max{αi, βi} for all i = 1, . . . , n

for example, the LCM of x5yz2 and x2y3z is x5y3z2
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syzygy polynomials

for f, g ∈ K[x1, . . . , xn], define the syzygy polynomial (S-polynomial)

S(f, g) =
xγ

lt(f)
f − xγ

lt(g)
g where xγ = lcm

(
lm(f), lm(g)

)

example

in grlex order
f = x3y2 − x2y3 + x g = 3x4y + y2

S(f, g) is designed to cancel the leading terms of f and g

S(f, g) = xf − 1
3yg

= −x3 y3 − y3

3 + x2
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cancellation and syzygy polynomials

suppose f1, . . . , fm each have multideg(fi) = δ, and c1, . . . , cm ∈ K

if the sum h =

m∑
i=1

cifi has a cancellation, i.e.,

multideg(h) < max
i

multideg(fi)

then h is a linear combination of S-polynomials

h =
∑
j,k

cjkS(fj , fk)

that is, the only way cancellation can occur is in S-polynomials

one can show this by rearranging the terms in h



14

example

given polynomials

f1 = x3y2 + x f2 = 2x3y2 + y2 f3 = x3y2 − xy + x2

the linear combination has a cancellation

f1 + f3 − f2 = x2 − xy + x− y2

so it is a sum of S-polynomials sij = S(fi, fj)

= 2s12 − s13

since

s12 = x− y2

2 s13 = −x2 + xy + x s23 = −x2 + xy + y2

2
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computation of Groebner bases

the polynomials g1, . . . , gm are a Groebner basis if

the remainder of S(gi, gj) on division by (g1, . . . , gm) is zero for all i, j

I this gives a computational test to check if g1, . . . , gm are a Groebner basis

I to prove this, we’ll show that if the above condition implies

for all f ∈ I there is some i such that lt(gi) divides lt(f)
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proof

we can write any f ∈ I in terms of the generators

f =
∑
i

higi

we need to prove that there is some i such that lt(gi) divides lt(f); this holds if

multideg(f) = max
i

multideg(higi)

proof by contradiction; suppose it does not hold; i.e.,

multideg(f) < max
i

multideg(higi)

for all choices of the hi such that f =
∑
higi
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proof, continued

from all choices of h such that f =
∑
higi, let δ be the minimum of the max

multidegrees
δ = min

h
max
i

multideg(higi)

and let h1, . . . , hm achieve this, so we have

f =
∑
i

higi and max
i

multideg(higi) = δ

for proof by contradiction, assume multideg(f) < δ

we’ll show that this contradicts the choice of δ as minimal; i.e, we can find h̃i
such that

f =
∑
i

h̃igi and max
i

multideg(h̃igi) < δ
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proof, continued

write f as a sum of terms in which cancellation occurs

f =
∑
i

lt(hi)gi + terms of lower multidegree

each term in the sum has multideg(lt(hi)gi) = δ, so from the previous result the
sum is a linear combination of S-polynomials

f =
∑
j,k

djkS
(
lt(hj)gj , lt(hk)gk

)
+ terms of lower multidegree

each S-poly has multideg < δ, and is a multiple of an S-poly of the gi

S
(
lt(hj)gj , lt(hk)gk

)
= pjkS(gj , gk)
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proof, continued

by assumption, each S-poly of the gi is divisible by the gi, so

S(gj , gk) =
∑
i

qijkgi

by the division algorithm, the terms satisfy

multideg(qijkgi) ≤ multidegS(gj , gk)

and since multideg(pq) ≤ multideg(p)multideg(q)

multideg(pjkqijkgi) ≤ multideg
(
S
(
lt(hj)gj , lt(hk)gk

))
< δ
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proof, continued

now we have a basis expansion for f

f =
∑
i,j,k

djkpjkqijkgi + terms of lower multidegree

=
∑
i

h̃igi + terms of lower multidegree

and each term has multideg(h̃iqi) < δ,

as required, this contradicts the assumption that δ was minimal

this proves the result
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the Buchberger algorithm

given f1, . . . , fm, the following algorithm constructs a Groebner basis for ideal{f1, . . . , fm}

G = {f1, . . . , fm}
repeat

for each pair fi, fj ∈ G, divide S(fi, fj) by G

if any remainder rij 6= 0

G = G ∪ {rij}
until all remainders are zero
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example

we’d like to find a Groebner basis for I = ideal{f1, f2} using grlex order

f1 = x3 − 2xy f2 = x2y − 2y2 + x

we find S(f1, f2) = −x2;

remainder on division of S(f1, f2) by {f1, f2} is −x2; call this f3

now we have G = {f1, f2, f3} we find S(f1, f3) = −2xy
remainder on division of S(f1, f3) by G is −2xy; call this f4
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example, continued

now we have G = {f1, f2, f3, f4} we find S(f1, f4) = −2xy2

remainder on division of S(f1, f4) by G is 0; ignore it

we find S(f2, f3) = −2y2 + x

remainder on division S(f2, f3) by G is −2y2 + x; call it f5

now we have G = {f1, f2, f3, f4, f5}
we find the remainder on division of S(fi, fj) by G is zero for all i, j

algorithm terminates

G = {f1, f2, f3, f4, f5} is a Groebner basis for I
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notes on Buchberger algorithm

I at each step, the candidate basis grows

I the final basis may contain redundant polynomials; we’ll see how to remove
these

I we still need to show that the algorithm always terminates; we’ll do this via
the ascending chain condition
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ascending chains

a sequence of ideals I1, I2, I3, . . . is called an ascending chain if

I1 ⊂ I2 ⊂ I3

we say this chain stabilizes if for some N

IN = IN+1 = IN+2 = · · ·
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the ascending chain condition

every ascending chain of ideals in K[x1, . . . , xn] stabilizes

this holds because, if we define

I =

∞⋃
i=1

Ii

then I is an ideal, so it is finitely generated, by say {f1, . . . , fm} ∈ I

pick N sufficiently large that {f1, . . . , fm} ⊂ IN , then

Ik = IN for all k ≥ N
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termination of the Buchberger algorithm

the algorithm generates an ascending chain

ideal{lt(G1)} ⊂ ideal{lt(G2)} ⊂ ideal{lt(G3)} ⊂ · · ·

which therefore stabilizes

remains to show that the set of basis functions stops growing

we’ll show that if Gk 6= Gk+1 then ideal{lt(Gk)} 6= ideal{lt(Gk+1)} to see this,
suppose r is the non-zero remainder of an S-poly, and

Gk+1 = Gk ∪ {r}

since r is a remainder on division, it is not divisible by any element of lt(Gk), so

lt(r) 6∈ ideal{lt(Gk)}
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minimal Groebner bases

suppose G = {g1, . . . , gm} is a Groebner basis;

we can remove polynomial gi, leaving G\{gi} a Groebner basis, if

lt(gi) is divisible by lt(gj) for some j 6= i

this holds because removing gi does not change the monomial ideal

ideal{lt(G)}

a Groebner basis where all such redundant polynomials have been removed is
called minimal
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example

the following polynomials are a Groebner basis w.r.t. grlex order

f1 = x3 − 2xy f2 = x2y − 2y2 + x f3 = −x2

f4 = −2xy f5 = −2y2 + x

since lt(f1) = −x lt(f3), we can remove f1

since lt(f2) = − 1
2x lt(f4), we can remove f2

so a minimal Groebner basis is {f3, f4, f5}

it is not unique; e.g., we can replace f3 by f3 + cf4 for any c ∈ K
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reduced Groebner bases

suppose G = {g1, . . . , gm} is a minimal Groebner basis; we can normalize each
element as follows

replace gi by the remainder on dividing gi by G\{gi}

if each element is monic, and normalized as above, then G is called a reduced
Groebner basis

for a given ideal and monomial ordering, it is unique

for the previous example, we have the reduced Groebner basis

g1 = x2 g2 = xy g3 = y2 − 1
2x
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example: linear equations

consider the system of linear equations

3x− 6y − 2z = 0

2x− 4y + 4w = 0

x− 2y − z − w = 0

which is

3 −6 −2 0
2 −4 0 4
1 −2 −1 −1



x
y
z
w

 = 0

the Buchberger algorithm gives the reduced Groebner basis

[
1 −2 0 −1
0 0 1 3

]
x
y
z
w

 = 0

i.e., it performs Gaussian elimination to reduced row echelon form
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properties of the Buchberger algorithm

I again, it’s linear algebra in disguise

I for polynomials in one variable, the Buchberger algorithm returns the gcd
of f1, . . . , fm

I for linear polynomials, the Buchberger algorithm performs Gaussian elimi-
nation

I many refinements of the algorithm are possible to achieve faster perfor-
mance


