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Feasibility Problems and Duality

Suppose f1, . . . , fm are polynomials, and consider the feasibility problem

does there exist x ∈ Kn such that

fi(x) = 0 for all i = 1, . . . ,m

Every polynomial in ideal{f1, . . . , fm} is zero on the feasible set.

So if 1 ∈ ideal{f1, . . . , fm}, then the primal problem is infeasible. Again, this is
proof by contradiction.

Equivalently, the primal is infeasible if there exist polynomials h1, . . . , hm ∈
K[x1, . . . , xn] such that

1 = h1(x)f1(x) + · · ·+ hm(x)fm(x) for all x ∈ Kn
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Strong Duality

So far, we have seen examples of weak duality. The Hilbert Nullstellensatz gives
a strong duality result for polynomials over the complex field.

The Nullstellensatz

Suppose f1, . . . , fm ∈ C[x1, . . . , xn]. Then

1 ∈ ideal{f1, . . . , fm} ⇐⇒ VC{f1, . . . , fm} = ∅
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Algebraically Closed Fields

For complex polynomials f1, . . . , fm ∈ C[x1, . . . , xn], we have

1 ∈ ideal{f1, . . . , fm} ⇐⇒ V{f1, . . . , fm} = ∅

This does not hold for polynomials and varieties over the real numbers.

For example, suppose f(x) = x2 + 1. Then

VR{f} =
{
x ∈ R | f(x) = 0

}
= ∅

But 1 6∈ ideal{f}, since any multiple of f will have degree ≥ 2.

The above results requires an algebraically closed field. Later, we will see a version
of this result that holds for real varieties.
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The Nullstellensatz and Feasibility Problems

The primal problem:

does there exist x ∈ Cn such that

fi(x) = 0 for all i = 1, . . . ,m

The dual problem:

do there exist h1, . . . , hm ∈ C[x1, . . . , xn] such that

1 = h1f1 + · · ·+ hmfm

The Nullstellensatz implies that these are strong alternatives. Exactly one of the
above problems is feasible.
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Example: Nullstellensatz

Consider the polynomials

f1(x) = x21 f2(x) = 1− x1x2

There is no x ∈ C2 which simultaneously satisfies f1(x) = 0 and f2(x) = 0; i.e.,

V{f1, f2} = ∅

Hence the Nullstellensatz implies there exists h1, h2 such that

1 = h1(x)f1(x) + h2(x)f2(x)

One such pair is

h1(x) = x22 h2(x) = 1 + x1x2
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Interpretations of the Nullstellensatz

I The feasibility question asks; do the polynomials f1, . . . , fm have a common
root?

The Nullstellensatz is a Bézout identity. In the scalar case, the dual problem
is: do the polynomials have a common factor?

I Suppose we look at f ∈ C[x], a scalar polynomial with complex coefficients.
The feasibility problem is: does it have a root?

The Nullstellensatz says it has a root if and only if there is no polynomial
h ∈ C[x] such that 1 = hf

Since degree(hf) ≥ degree(f), there is no such h if degree(f) ≥ 1; i.e. all
polynomials f with degree(f) ≥ 1 have a root.

So the Nullstellensatz generalizes the fundamental theorem of algebra.
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Interpretation: Partition of Unity

The equation
1 = h1f1 + · · ·+ hmfm

is called a partition of unity.

For example, when m = 2, we have

1 = h1(x)f1(x) + h2(x)f2(x) for all x

Let Vi =
{
x ∈ Cn | fi(x) = 0

}
.

Let q(x) = h1(x)f1(x). Then for x ∈ V1, we have q(x) = 0, and hence the second
term h2(x)f2(x) equals one. Conversely, for x ∈ V2, we must have q(x) = 1.

Since q(x) cannot be both zero and one, we must have V1 ∩ V2 = ∅.
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Interpretation: Certificates

The functions h1, . . . , hm give a certificate of infeasibility for the primal problem.

Given the hi, one may immediately computationally verify that

1 = h1f1 + · · ·+ hmfm

and this proves that V{f1, . . . , fm} = ∅
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Duality

The notion of duality here is parallel to that for linear functionals.

Compare, for S ⊂ Rn

I(S) =
{
f ∈ R[x1, . . . , xn]

∣∣ f(x) = 0 for all x ∈ S
}

with
S⊥ =

{
p ∈ (Rn)∗

∣∣ 〈p, x〉 = 0 for all x ∈ S
}

I There is a pairing between Rn and (Rn)∗; we can view either as a space of
functionals on the other

I The same holds between Rn and R[x1, . . . , xn]

I If S ⊂ T , then S⊥ ⊃ T⊥ and I(S) ⊃ I(T )
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Feasibility and the Ideal-Variety Correspondence

Given polynomials f1, . . . , fm ∈ C[x1, . . . , xn], we define two objects

I the ideal I = ideal{f1, . . . , fm}

I the variety V = V{f1, . . . , fm}

We have the following results:

(i) weak duality:
V = ∅ ⇐= 1 ∈ I

(ii) Nullstellensatz (strong duality):

V = ∅ =⇒ 1 ∈ I

(iii) Strong Nullstellensatz: √
I = I(V )
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Computation

The feasibility problem is equivalent to the ideal membership problem; is it true
that

1 ∈ ideal{f1, . . . , fm}

Equivalently, are there polynomials h1, . . . , hm ∈ C[x1, . . . , xn] such that

1 = h1f1 + · · ·+ hmfm

How do we compute this?

I The above equation is linear in the coefficients of h; so if we have a bound
on the degree of the hi we can easily find them.

I Since the feasibility problem is NP-hard, the bound must grow exponentially
with the size of the fi.
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Ideals and Division

for f ∈ K[x], the leading term of f is the term with highest degree

e.g., f = 7x3 + 3x+ 1 has leading term lt(f) = 7x3

for polynomials, it’s simple to divide them

3x+ 1

x2 + x+ 1 3x3 + 4x2 + 5x+ 2

3x3 + 3x2 + 3x

x2 + 2x+ 2

x2 + x+ 1

x+ 1
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division algorithm

algorithm is

q = 0; r = f ;

while r 6= 0 and lt(g) divides lt(r)

q = q + lt(r)/ lt(g)

r = r − g lt(r)/ lt(g)

it works because

I at the end of every iteration, f = qg + r holds

I and deg(r) drops by at least 1

I it stops when r = 0 or deg(r) < deg(g)
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division theorem

suppose f, g ∈ K[x] and g 6= 0; then there exists unique q, r ∈ K[x] such that

f = qg + r

and either r = 0 or deg(r) < deg(g)

it’s a smart way of solving a Toeplitz system of linear equations, e.g., if deg(f) = 6
and deg(g) = 4 

f0
f1
f2
f3
f4
f5
f6


=



g0
g1 g0
g2 g1 g0
g3 g2 g1
g4 g3 g2

g4 g3
g4


q0q1
q2

+



r0
r1
r2
r3
0
0
0


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ideals and division

if I ⊂ K[x] is an ideal then there is a polynomial g which generates it; i.e.,

I = ideal{g}

this is true only for polynomials in one variable

I so the set

I = ideal{f1, . . . , fm}

=

{
m∑
i=1

hifi
∣∣ hi ∈ R[x1, . . . , xn]

}

can be generated using just one polynomial g; such an ideal is called a
principle ideal

I in other words, every polynomial in I is a multiple of g
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ideals of one-variable polynomials

in fact, we can pick g to be the polynomial of minimum degree in I

I = ideal{g}

then for any f ∈ I we have
f = qg + r

and so r = f − qg which implies r ∈ I also; but we cannot have deg(r) < deg(g)
since g has minimum degree, so we must have r = 0

in fact g is unique up to multiplication by a constant
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the greatest common divisor

polynomial h ∈ K[x] is called a greatest common divisor of f1, . . . , fm if

(i) h divides all of the fi

(ii) any other p that divides all the fi also divides h

in fact, in K[x] the GCD is the generator of the ideal

ideal{f1, . . . , fm} = ideal{gcd{f1, . . . , fm}}
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the greatest common divisor

let’s show this; we know that there is some polynomial g such that

ideal{f1, . . . , fm} = ideal{g}

to show it’s a GCD, notice that

(i) g divides all the fi

(ii) if any other p divides all the fi then fi = qip for some qi

but since g ∈ ideal{f1, . . . , fm} we must have

g = α1f1 + · · ·+ αmfm

= (α1q1 + · · ·+ αmqm)p

so p divides g
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computing the GCD

if we can compute the GCD of two polynomials, we can compute it for many,
since

gcd
{
f1, gcd{f2, f3}

}
= gcd{f1, f2, f3}
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Euclidean algorithm (300 B.C.)

to compute h = gcd{f, g}, construct a sequence of polynomials

s0, s1, s2, . . .

start with s0 = f and s1 = g, and define the next in sequence by

sk+1 = remainder(sk−1, sk)

stop when sn = 0, then sn−1 = gcd(f, g)

this works because if f = qg + r then

gcd(f, g) = gcd(f − qg, g) = gcd(r, g)

ideal{f, g} = ideal{f − qg, g} = ideal{r, g}
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example

start with s0 and s1

s0 = −3− 2x− x2 + 3x6 + 2x7 + x8

s1 = 3− x− 3x2 + x3

let s2 be the remainder on dividing s0 by s1

s2 = −1638 + 1638x2

let s3 be the remainder on dividing s1 by s2

s3 = 0

and normalizing gives x2 − 1 = gcd(s0, s1)
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testing ideal membership

to test if f ∈ ideal{f1, . . . , fm}

I compute g = gcd{f1, . . . , fm}

I then f is in the ideal if and only if g divides f

computing the coefficients

since g ∈ ideal{f1, . . . , fm} we know there are polynomials h1, . . . , hm such that

g = h1f1 + · · ·+ hmfm

if we know these, we can express any f in the ideal in terms of the basis
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computing the coefficients

the Euclidean algorithm allows us to find the hi such that

gcd{f1, f2} = h1f1 + h2f2

in particular, when there is no solution to f1(x) = f2(x) = 0, this will give the
Nullstellensatz certificate

to see this, suppose the algorithm terminates with sn = 0;
we have sk−1 = qksk + sk+1 for some qk, so

sk+1 = sk−1 − qksk

so we can write the gcd sn−1 in terms of sn−2 and sn−3, and then continue
substituting until we have

sn−1 = α1s0 + α2s1
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example: Nullstellensatz refutation

suppose we have

f1 = −1 + 5x5 + x8 f2 = 1− 2x+ x6

we find gcd{f1, f2} = 1, so 1 ∈ ideal{f1, f2}; i.e., the primal problem is infeasible

the certificate is

h1 =
1

48065
(−65287 + 3472x+ 5457x2 + 9892x3 + 19922x4 + 36157x5)

h2 =
1

48065
(−17222− 30972x− 56487x2 − 103082x3 − 186242x4

− 9892x5 − 19922x6 − 36157x7)
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so far

I we have discussed the one-to-one correspondence between ideals and vari-
eties.

I this allows us to convert questions about feasibility of varieties into questions
about ideal membership

I but only over the complex numbers

we can compute certificates directly using

I linear algebra

I division algorithms, for polynomials in one variable


