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Feasibility Problems and Duality

Suppose f1, ..., fm are polynomials, and consider the feasibility problem

does there exist z € K" such that
fi(x) =0 foralli=1,...,m

Every polynomial in ideal{ f1,..., fin} is zero on the feasible set.

So if 1 € ideal{ f1,..., fm}. then the primal problem is infeasible. Again, this is
proof by contradiction.

Equivalently, the primal is infeasible if there exist polynomials hy,...,h, €
K[z1,...,x,] such that

1=hi(z)fi(z)+ -+ hm(2) frm(x) for all z € K"
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Strong Duality

So far, we have seen examples of weak duality. The Hilbert Nullstellensatz gives
a strong duality result for polynomials over the complex field.

The Nullstellensatz
Suppose f1,..., fm € Clz1,...,2,]. Then

1 eideal{f1,...,fm} — Ve{fi,o s fm} =0



4

Algebraically Closed Fields
For complex polynomials f1,..., fm € Clz1,...,z,], we have

1 eideal{f1,..., fm} — V{fi,-- s fm}=10

This does not hold for polynomials and varieties over the real numbers.

For example, suppose f(x) = 22 + 1. Then

Ve{f} ={z€R | f(x) =0}
-y

But 1 ¢ ideal{f}, since any multiple of f will have degree > 2.

The above results requires an algebraically closed field. Later, we will see a version
of this result that holds for real varieties.
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The Nullstellensatz and Feasibility Problems

The primal problem:
does there exist © € C" such that
fi(z) =0 foralli=1,...,m
The dual problem:
do there exist hy, ...,y € Clzy,...,2,] such that

1= hyfy 4 b

The Nullstellensatz implies that these are strong alternatives. Exactly one of the
above problems is feasible.
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Example: Nullstellensatz
Consider the polynomials
fi(z) = af fo(z) =1— 129

There is no 2 € C? which simultaneously satisfies f1(x) = 0 and fa(z) = 0; i.e.,

V{fi, f2} =0

Hence the Nullstellensatz implies there exists h1, ho such that
1= hi(z) f1(z) + ho(2) f2(2)
One such pair is

hi(x) = z3 ho(x) =14 2129
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Interpretations of the Nullstellensatz

» The feasibility question asks; do the polynomials f1, ..., f,, have a common
root?

The Nullstellensatz is a Bézout identity. In the scalar case, the dual problem
is: do the polynomials have a common factor?

» Suppose we look at f € C|x], a scalar polynomial with complex coefficients.
The feasibility problem is: does it have a root?

The Nullstellensatz says it has a root if and only if there is no polynomial
h € C[z] such that 1 = hf

Since degree(hf) > degree(f), there is no such h if degree(f) > 1; i.e. all
polynomials f with degree(f) > 1 have a root.

So the Nullstellensatz generalizes the fundamental theorem of algebra.
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Interpretation: Partition of Unity

The equation
l=hifi+ +hnfm

is called a partition of unity.

For example, when m = 2, we have

1=hi(z) fr(z) + ha(z) f2(x) for all z
Let V; = {xE(C" | fi(a:):O}.

Let ¢(z) = hi(x)fi1(x). Then for x € Vi, we have ¢(x) = 0, and hence the second
term ho(z)f2(z) equals one. Conversely, for x € V4, we must have ¢(z) = 1.

Since g(x) cannot be both zero and one, we must have V; NV, = 0.
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Interpretation: Certificates

The functions hy, ..., h,, give a certificate of infeasibility for the primal problem.

Given the h;, one may immediately computationally verify that

1= hlfl +"'+h7nf’m

and this proves that V{f1,..., fm} =0
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Duality

The notion of duality here is parallel to that for linear functionals.

Compare, for S C R™
I(S):{fGR[xl,...,xn] | f(x):OforaIIxGS}

with
SJ‘:{pG(R")* | <p,x>:0forallz€S}

» There is a pairing between R™ and (R™)*; we can view either as a space of
functionals on the other

» The same holds between R™ and R[z1,. .., %)

» If SCT,then St > T+ and Z(S) D Z(T)
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Feasibility and the Ideal-Variety Correspondence

Given polynomials f1,..., fm € Clz1,...,z,], we define two objects

» the ideal I =ideal{f1,..., fm}
» the variety V. =V{f1,..., fm}

We have the following results:

(i) weak duality:
V=0 = lel

(ii) Nullstellensatz (strong duality):

V=0 = lel

(iii) Strong Nullstellensatz:
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Computation

The feasibility problem is equivalent to the ideal membership problem; is it true
that

1 eideal{fi,..., fm}

Equivalently, are there polynomials hq, ..., hy, € Clzy,...,2,] such that

L=hifi+-+hmfm

How do we compute this?
» The above equation is linear in the coefficients of h; so if we have a bound
on the degree of the h; we can easily find them.

» Since the feasibility problem is NP-hard, the bound must grow exponentially
with the size of the f;.
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Ideals and Division

for f € K|x], the leading term of f is the term with highest degree

eg, f=T2"+3x+1 has leading term It(f) = 73

for polynomials, it's simple to divide them

3r+1

22+ +1|32% +42%2 4+ 52 +2
323 + 322+ 3z

2242 +2
22+ x+1

r+1
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division algorithm

algorithm is

q=0; r=Ff;

while 7 # 0 and 1t(g) divides 1t(r)
q=q+1t(r)/1t(g)
r=r—glt(r)/1t(g)

it works because

» at the end of every iteration, f = gg + r holds
» and deg(r) drops by at least 1

» it stops when r = 0 or deg(r) < deg(g)
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division theorem

suppose f, g € K[z] and g # 0; then there exists unique ¢, r € K[z] such that

f=aq9+r

and either » = 0 or deg(r) < deg(g)

it's a smart way of solving a Toeplitz system of linear equations, e.g., if deg(f) = 6
and deg(g) =4

fo go TQ
f1 g1 9o 1
f2 g2 91 go| |9 2
sl =193 92 g1| |@| + |73
Ja ga g3 G2| |22 0
f5 g4 g3 0
i L 94| 1 0
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ideals and division

if I C K[z] is an ideal then there is a polynomial g which generates it; i.e.,

I = ideal{g}

this is true only for polynomials in one variable

» so the set

I =ideal{f1,..., fm}

= {zm:hzfz ‘ h; ER[$17--~7xn]}

i=1

can be generated using just one polynomial g; such an ideal is called a
principle ideal

» in other words, every polynomial in I is a multiple of g
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ideals of one-variable polynomials

in fact, we can pick g to be the polynomial of minimum degree in I

I = ideal{g}

then for any f € I we have

f=a9+r
and so r = f — qg which implies r € I also; but we cannot have deg(r) < deg(g)
since g has minimum degree, so we must have r = 0

in fact g is unique up to multiplication by a constant
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the greatest common divisor

polynomial h € K][z] is called a greatest common divisor of f1,...

(i) h divides all of the f;

(i) any other p that divides all the f; also divides h

in fact, in K[z] the GCD is the generator of the ideal

ideal{ f1,..., fm} = ideal{ged{f1, ..., fm}}
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the greatest common divisor

let’s show this; we know that there is some polynomial g such that

ideal{ f1,..., fm} = ideal{g}

to show it's a GCD, notice that

(i) g divides all the f;

(ii) if any other p divides all the f; then f; = ¢;p for some g;

but since g € ideal{f1,..., fi} we must have

g=aifi+ - +amfm
= (a1q1 + 4+ WnGm)p

so p divides g
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computing the GCD

if we can compute the GCD of two polynomials, we can compute it for many,
since

ged{ f1,gcd{f2, f3}} = ged{f1, f2, f3}



21

Euclidean algorithm (300 B.C.)

to compute h = ged{f, g}, construct a sequence of polynomials
S0, 81552, -« -
start with sg = f and s; = g, and define the next in sequence by
Sg+1 = remainder(sg_1, Sk)

stop when s, =0, then s,_1 = ged(f, g)

this works because if f = qg + r then
ged(f, 9) = ged(f — q9,9) = ged(r, 9)

ideal{fa g} = ldeal{f — 49, g} = ideal{r7g}
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example

start with sg and s;

50:—3—2x—x2+3x6+2x7+x8

s1=3—xz—-3z%>+2°
let so be the remainder on dividing sg by s;
s9 = —1638 + 1638 2>
let s3 be the remainder on dividing s1 by s

83:0

and normalizing gives 22 — 1 = gcd(so, 51)



23

testing ideal membership

to test if f € ideal{f1,..., fin}

» compute g = ged{f1,..., fin}
» then f is in the ideal if and only if ¢ divides f

computing the coefficients

since g € ideal{f1,..., fm} we know there are polynomials h1, ..., hy, such that

g=hifi+-+hnfm

if we know these, we can express any f in the ideal in terms of the basis
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computing the coefficients

the Euclidean algorithm allows us to find the h; such that

ged{ f1, fo} = hifi + hafa

in particular, when there is no solution to fi(z) = f2(x) = 0, this will give the
Nullstellensatz certificate

to see this, suppose the algorithm terminates with s,, = 0;
we have si_1 = xSk + Sk+1 for some gy, so

Sk+1 = Sk—1 — qkSk

so we can write the ged s,_1 in terms of s,_5 and s,_3, and then continue
substituting until we have

Sp—1 = Q180 + (281
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example: Nulistellensatz refutation

suppose we have

f1=—1+53:5—|—a:8 f2:1—2m+x6

we find ged{ f1, fa} =1, so 1 € ideal{ f1, f2}; i.e., the primal problem is infeasible

the certificate is

hy

= T5ogs (05287 + 3472 + 5457 2% + 98922° 4199222 + 36157 2°)

h2 = 15065

(—17222 — 30972 & — 56487 2% — 103082z — 186242 x*
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so far

» we have discussed the one-to-one correspondence between ideals and vari-
eties.

» this allows us to convert questions about feasibility of varieties into questions
about ideal membership

» but only over the complex numbers

we can compute certificates directly using

» linear algebra

» division algorithms, for polynomials in one variable



