EE464 Positivstellensatz

Basic Semialgebraic Sets

The basic (closed) semialgebraic set defined by polynomials f_{1}, \ldots, f_{m} is

$$
\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0 \text { for all } i=1, \ldots, m\right\}
$$

Examples

- The nonnegative orthant in \mathbb{R}^{n}
- The cone of positive semidefinite matrices
- Feasible set of an SDP; polyhedra and spectrahedra

Properties

- If S_{1}, S_{2} are basic closed semialgebraic sets, then so is $S_{1} \cap S_{2}$; i.e., the class is closed under intersection
- Not closed under union or projection

Semialgebraic Sets

Given the basic semialgebraic sets, we may generate other sets by set theoretic operations; unions, intersections and complements.

A set generated by a finite sequence of these operations on basic semialgebraic sets is called a semialgebraic set.

Some examples:

- The set

$$
S=\left\{x \in \mathbb{R}^{n} \mid f(x) * 0\right\}
$$

is semialgebraic, where $*$ denotes $<, \leq,=, \neq$.

- In particular every real variety is semialgebraic.
- We can also generate the semialgebraic sets via Boolean logical operations applied to polynomial equations and inequalities

Semialgebraic Sets

Every semialgebraic set may be represented as either

- an intersection of unions

$$
S=\bigcap_{i=1}^{m} \bigcup_{j=1}^{p_{i}}\left\{x \in \mathbb{R}^{n} \mid \operatorname{sign} f_{i j}(x)=a_{i j}\right\} \text { where } a_{i j} \in\{-1,0,1\}
$$

- a finite union of sets of the form

$$
\left\{x \in \mathbb{R}^{n} \mid f_{i}(x)>0, h_{j}(x)=0 \text { for all } i=1, \ldots, m, j=1, \ldots, p\right\}
$$

- in \mathbb{R}, a finite union of points and open intervals

Every closed semialgebraic set is a finite union of basic closed semialgebraic sets; i.e., sets of the form

$$
\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0 \text { for all } i=1, \ldots, m\right\}
$$

Tarski-Seidenberg and Quantifier Elimination

Tarski-Seidenberg theorem: if $S \subset \mathbb{R}^{n+p}$ is semialgebraic, then so are

- $\left\{x \in \mathbb{R}^{n} \mid \exists y \in \mathbb{R}^{p}(x, y) \in S\right\} \quad$ (closure under projection)
- $\left\{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{p}(x, y) \in S\right\} \quad$ (complements and projections)
i.e., quantifiers do not add any expressive power

Cylindrical algebraic decomposition (CAD) may be used to compute the semialgebraic set resulting from quantifier elimination

Feasibility of Semialgebraic Sets

Suppose S is a semialgebraic set; we'd like to solve the feasibility problem

Is S non-empty?

More specifically, suppose we have a semialgebraic set represented by polynomial inequalities and equations

$$
S=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0, h_{j}(x)=0 \text { for all } i=1, \ldots, m, j=1, \ldots, p\right\}
$$

- Important, non-trivial result: the feasibility problem is decidable.
- But NP-hard (even for a single polynomial, as we have seen)
- We would like to certify infeasibility

Certificates So Far

- The Nullstellensatz: a necessary and sufficient condition for feasibility of complex varieties

$$
\left\{x \in \mathbb{C}^{n} \mid h_{i}(x)=0 \forall i\right\}=\emptyset \quad \Longleftrightarrow \quad-1 \in \operatorname{ideal}\left\{h_{1}, \ldots, h_{m}\right\}
$$

- Valid inequalities: a sufficient condition for infeasibility of real basic semialgebraic sets

$$
\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0 \forall i\right\}=\emptyset \quad \Longleftarrow-1 \in \operatorname{cone}\left\{f_{1}, \ldots, f_{m}\right\}
$$

- Linear Programming: necessary and sufficient conditions via duality for real linear equations and inequalities

Certificates So Far

Degree \backslash Field	Complex	Real
Linear	Range/Kernel Linear Algebra	Farkas Lemma Linear Programming
Polynomial	Nullstellensatz Bounded degree: LP Groebner bases	????

We'd like a method to construct certificates for

- polynomial equations
- over the real field

Real Fields and Inequalities

If we can test feasibility of real equations then we can also test feasibility of real inequalities and inequations, because

- inequalities: there exists $x \in \mathbb{R}$ such that $f(x) \geq 0$ if and only if

$$
\text { there exists }(x, y) \in \mathbb{R}^{2} \text { such that } f(x)=y^{2}
$$

- strict inequalities: there exists x such that $f(x)>0$ if and only if

$$
\text { there exists }(x, y) \in \mathbb{R}^{2} \text { such that } y^{2} f(x)=1
$$

- inequations: there exists x such that $f(x) \neq 0$ if and only if

$$
\text { there exists }(x, y) \in \mathbb{R}^{2} \text { such that } y f(x)=1
$$

The underlying theory for real polynomials called real algebraic geometry

Real Varieties

The real variety defined by polynomials $h_{1}, \ldots, h_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is

$$
\mathcal{V}_{\mathbb{R}}\left\{h_{1}, \ldots, h_{m}\right\}=\left\{x \in \mathbb{R}^{n} \mid h_{i}(x)=0 \text { for all } i=1, \ldots, m\right\}
$$

We'd like to solve the feasibility problem; is $\mathcal{V}_{\mathbb{R}}\left\{h_{1}, \ldots, h_{m}\right\} \neq \emptyset$?

We know

- Every polynomial in ideal $\left\{h_{1}, \ldots, h_{m}\right\}$ vanishes on the feasible set.
- The (complex) Nullstellensatz:

$$
-1 \in \operatorname{ideal}\left\{h_{1}, \ldots, h_{m}\right\} \quad \Longrightarrow \quad \mathcal{V}_{\mathbb{R}}\left\{h_{1}, \ldots, h_{m}\right\}=\emptyset
$$

- But this condition is not necessary over the reals

The Real Nullstellensatz

Recall Σ is the cone of polynomials representable as sums of squares.

Suppose $h_{1}, \ldots, h_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

$$
-1 \in \Sigma+\operatorname{ideal}\left\{h_{1}, \ldots, h_{m}\right\} \quad \Longleftrightarrow \quad \mathcal{V}_{\mathbb{R}}\left\{h_{1}, \ldots, h_{m}\right\}=\emptyset
$$

Equivalently, there is no $x \in \mathbb{R}^{n}$ such that

$$
h_{i}(x)=0 \quad \text { for all } i=1, \ldots, m
$$

if and only if there exists $t_{1}, \ldots, t_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $s \in \Sigma$ such that

$$
-1=s+t_{1} h_{1}+\cdots+t_{m} h_{m}
$$

Example

Suppose $h(x)=x^{2}+1$. Then clearly $\mathcal{V}_{\mathbb{R}}\{h\}=\emptyset$

We saw earlier that the complex Nullstellensatz cannot be used to prove emptyness of $\mathcal{V}_{\mathbb{R}}\{h\}$

But we have

$$
-1=s+t h
$$

with

$$
s(x)=x^{2} \quad \text { and } \quad t(x)=-1
$$

and so the real Nullstellensatz implies $\mathcal{V}_{\mathbb{R}}\{h\}=\emptyset$.

The polynomial equation $-1=s+$ th gives a certificate of infeasibility.

The Positivstellensatz

We now turn to feasibility for basic semialgebraic sets, with primal problem

$$
\begin{array}{ll}
\text { Does there exist } x \in \mathbb{R}^{n} \text { such that } \\
f_{i}(x) \geq 0 & \text { for all } i=1, \ldots, m \\
h_{j}(x)=0 & \text { for all } j=1, \ldots, p
\end{array}
$$

Call the feasible set S; recall

- every polynomial in cone $\left\{f_{1}, \ldots, f_{m}\right\}$ is nonnegative on S
- every polynomial in ideal $\left\{h_{1}, \ldots, h_{p}\right\}$ is zero on S

The Positivstellensatz (Stengle 1974)

$$
S=\emptyset \quad \Longleftrightarrow \quad-1 \in \operatorname{cone}\left\{f_{1}, \ldots, f_{m}\right\}+\operatorname{ideal}\left\{h_{1}, \ldots, h_{m}\right\}
$$

Example

Consider the feasibility problem
$S=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y) \geq 0, h(x, y)=0\right\}$
where

$$
\begin{aligned}
& f(x, y)=x-y^{2}+3 \\
& h(x, y)=y+x^{2}+2
\end{aligned}
$$

By the P -satz, the primal is infeasible if and only if there exist polynomials $s_{1}, s_{2} \in$ Σ and $t \in \mathbb{R}[x, y]$ such that

$$
-1=s_{1}+s_{2} f+t h
$$

A certificate is given by

$$
s_{1}=\frac{1}{3}+2\left(y+\frac{3}{2}\right)^{2}+6\left(x-\frac{1}{6}\right)^{2}, \quad s_{2}=2, \quad t=-6 .
$$

Explicit Formulation of the Positivstellensatz

The primal problem is

Does there exist $x \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
f_{i}(x) \geq 0 & \text { for all } i=1, \ldots, m \\
h_{j}(x)=0 & \text { for all } j=1, \ldots, p
\end{aligned}
$$

The dual problem is

Do there exist $t_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $s_{i}, r_{i j}, \ldots \in \Sigma$ such that

$$
-1=\sum_{i} h_{i} t_{i}+s_{0}+\sum_{i} s_{i} f_{i}+\sum_{i \neq j} r_{i j} f_{i} f_{j}+\cdots
$$

These are strong alternatives

Testing the Positivstellensatz

Do there exist $t_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $s_{i}, r_{i j}, \ldots \in \Sigma$ such that

$$
-1=\sum_{i} t_{i} h_{i}+s_{0}+\sum_{i} s_{i} f_{i}+\sum_{i \neq j} r_{i j} f_{i} f_{j}+\cdots
$$

- This is a convex feasibility problem in $t_{i}, s_{i}, r_{i j}, \ldots$
- To solve it, we need to choose a subset of the cone to search; i.e., the maximum degree of the above polynomial; then the problem is a semidefinite program
- This gives a hierarchy of syntactically verifiable certificates
- The validity of a certificate may be easily checked; e.g., linear algebra, random sampling
- Unless NP=co-NP, the certificates cannot always be polynomially sized.

Example: Farkas Lemma

The primal problem; does there exist $x \in \mathbb{R}^{n}$ such that

$$
A x+b \geq 0 \quad C x+d=0
$$

Let $f_{i}(x)=a_{i}^{T} x+b_{i}, h_{i}(x)=c_{i}^{T} x+d_{i}$. Then this system is infeasible if and only if

$$
-1 \in \operatorname{cone}\left\{f_{1}, \ldots, f_{m}\right\}+\operatorname{ideal}\left\{h_{1}, \ldots, h_{p}\right\}
$$

Searching over linear combinations, the primal is infeasible if there exist $\lambda \geq 0$ and μ such that

$$
\lambda^{T}(A x+b)+\mu^{T}(C x+d)=-1
$$

Equating coefficients, this is equivalent to

$$
\lambda^{T} A+\mu^{T} C=0 \quad \lambda^{T} b+\mu^{T} d=-1 \quad \lambda \geq 0
$$

Hierarchy of Certificates

- Interesting connections with logic, proof systems, etc.
- Failure to prove infeasibility (may) provide points in the set.
- Tons of applications:
optimization, copositivity, dynamical systems, quantum mechanics...

General Scheme

Special Cases

Many known methods can be interpreted as fragments of P-satz refutations.

- LP duality: linear inequalities, constant multipliers.
- S-procedure: quadratic inequalities, constant multipliers
- Standard SDP relaxations for QP.
- The linear representations approach for functions f strictly positive on the set defined by $f_{i}(x) \geq 0$.

$$
f(x)=s_{0}+s_{1} f_{1}+\cdots+s_{n} f_{n}, \quad s_{i} \in \Sigma
$$

Converse Results

- Losslessness: when can we restrict a priori the class of certificates?
- Some cases are known; e.g., additional conditions such as linearity, perfect graphs, compactness, finite dimensionality, etc, can ensure specific a priori properties.

Example: Boolean Minimization

$$
\begin{aligned}
x^{T} Q x & \leq \gamma \\
x_{i}^{2}-1 & =0
\end{aligned}
$$

A P-satz refutation holds if there is $S \succeq 0$ and $\lambda \in \mathbb{R}^{n}, \varepsilon>0$ such that

$$
-\varepsilon=x^{T} S x+\gamma-x^{T} Q x+\sum_{i=1}^{n} \lambda_{i}\left(x_{i}^{2}-1\right)
$$

which holds if and only if there exists a diagonal Λ such that $Q \succeq \Lambda, \gamma=$ trace $\Lambda-\varepsilon$.

The corresponding optimization problem is

$$
\begin{array}{ll}
\text { maximize } & \operatorname{trace} \Lambda \\
\text { subject to } & Q \succeq \Lambda \\
& \Lambda \text { is diagonal }
\end{array}
$$

Example: S-Procedure

The primal problem; does there exist $x \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
x^{T} F_{1} x & \geq 0 \\
x^{T} F_{2} x & \geq 0 \\
x^{T} x & =1
\end{aligned}
$$

We have a P-satz refutation if there exists $\lambda_{1}, \lambda_{2} \geq 0, \mu \in \mathbb{R}$ and $S \succeq 0$ such that

$$
-1=x^{T} S x+\lambda_{1} x^{T} F_{1} x+\lambda_{2} x^{T} F_{2} x+\mu\left(1-x^{T} x\right)
$$

which holds if and only if there exist $\lambda_{1}, \lambda_{2} \geq 0$ such that

$$
\lambda_{1} F_{1}+\lambda_{2} F_{2} \leq-I
$$

Subject to an additional mild constraint qualification, this condition is also necessary for infeasibility.

Exploiting Structure

What algebraic properties of the polynomial system yield efficient computation?

- Sparseness: few nonzero coefficients.
- Newton polytopes techniques
- Complexity does not depend on the degree
- Symmetries: invariance under a transformation group
- Frequent in practice. Enabling factor in applications.
- Can reflect underlying physical symmetries, or modelling choices.
- SOS on invariant rings
- Representation theory and invariant-theoretic techniques.
- Ideal structure: Equality constraints.
- SOS on quotient rings
- Compute in the coordinate ring. Quotient bases (Groebner)

Example: Structured Singular Value

- Structured singular value μ and related problems: provides better upper bounds.
- μ is a measure of robustness: how big can a structured perturbation be, without losing stability.
- A standard semidefinite relaxation: the μ upper bound.
- Morton and Doyle's counterexample with four scalar blocks.
- Exact value: approx. 0.8723
- Standard μ upper bound: 1
- New bound: 0.895

Example: Matrix Copositivity

A matrix $M \in \mathbb{R}^{n \times n}$ is copositive if

$$
x^{T} M x \geq 0 \quad \forall x \in \mathbb{R}^{n}, x_{i} \geq 0 .
$$

- The set of copositive matrices is a convex closed cone, but...
- Checking copositivity is coNP-complete
- Very important in QP. Characterization of local solutions.
- The P-satz gives a family of computable SDP conditions, via:

$$
\left(x^{T} x\right)^{d}\left(x^{T} M x\right)=s_{0}+\sum_{i} s_{i} x_{i}+\sum_{j k} s_{j k} x_{j} x_{k}+\cdots
$$

Example: Geometric Inequalities

Ono's inequality: For an acute triangle,

$$
(4 K)^{6} \geq 27 \cdot\left(a^{2}+b^{2}-c^{2}\right)^{2} \cdot\left(b^{2}+c^{2}-a^{2}\right)^{2} \cdot\left(c^{2}+a^{2}-b^{2}\right)^{2}
$$

where K and a, b, c are the area and lengths of the edges.
The inequality is true if:

$$
\left.\left.\begin{array}{l}
t_{1}:=a^{2}+b^{2}-c^{2} \\
t_{2} \\
t_{3}:=b^{2}+c^{2}-a^{2} \\
c^{2}+a^{2}-b^{2} \\
\geq
\end{array}\right\} 00\right\}(4 K)^{6} \geq 27 \cdot t_{1}^{2} \cdot t_{2}^{2} \cdot t_{3}^{2}
$$

A simple proof: define
$s(x, y, z)=\left(x^{4}+x^{2} y^{2}-2 y^{4}-2 x^{2} z^{2}+y^{2} z^{2}+z^{4}\right)^{2}+15 \cdot(x-z)^{2}(x+z)^{2}\left(z^{2}+x^{2}-y^{2}\right)^{2}$.
We have then

$$
(4 K)^{6}-27 \cdot t_{1}^{2} \cdot t_{2}^{2} \cdot t_{3}^{2}=s(a, b, c) \cdot t_{1} \cdot t_{2}+s(c, a, b) \cdot t_{1} \cdot t_{3}+s(b, c, a) \cdot t_{2} \cdot t_{3}
$$

therefore proving the inequality.

