EE464 Resultants

companion matrix

write $p=x^{n}+p_{n-1} x^{n-1}+\cdots+p_{1} x+p_{0}$ in terms of its roots x_{1}, \ldots, x_{n}

$$
p(x)=\prod_{k=1}^{n}\left(x-x_{k}\right)
$$

define the $n \times n$ companion matrix

$$
C_{p}=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -p_{0} \\
1 & 0 & \ldots & 0 & -p_{1} \\
0 & 1 & \ldots & 0 & -p_{2} \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \ldots & 1 & -p_{n-1}
\end{array}\right]
$$

the characteristic polynomial of C_{p} is p

$$
\operatorname{det}\left(x I-C_{p}\right)=p
$$

eigenvectors of the companion matrix
define the Vandermonde matrix

$$
V=\left[\begin{array}{cccc}
1 & x_{1} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & \ldots & x_{2}^{n-1} \\
\vdots & & \vdots & \\
1 & x_{n} & \ldots & x_{n}^{n-1}
\end{array}\right]
$$

- $V C_{p}=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) V$
- V is nonsingular iff the x_{i} are distinct
- columns of V^{-1} are coefficients of Lagrange polynomials $L_{j}\left(x_{i}\right)=\delta_{i j}$ because $\left[\begin{array}{llll}1 & x_{1} & \ldots & x_{1}^{n-1}\end{array}\right] V^{-1}=e_{1}^{T} V V^{-1}=e_{1}^{T}$

example

- $p=(x-1)(x-2)(x-5)$
- $C_{p}=\left[\begin{array}{ccc}0 & 0 & 10 \\ 1 & 0 & -17 \\ 0 & 1 & 7\end{array}\right]$
- $V=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 5 & 25\end{array}\right] \quad V^{-1}=\frac{1}{12}\left[\begin{array}{ccc}30 & -20 & 2 \\ -21 & 24 & -3 \\ 3 & -4 & 1\end{array}\right]$
- $L_{1}(x)=\left(30-21 x+3 x^{2}\right) / 12=(x-2)(x-5) / 4$

trace of the companion matrix

for any $A \in \mathbb{C}^{n \times n}$ we have

$$
\operatorname{trace} A=\sum_{i=1}^{n} \lambda_{i}(A) \quad \lambda_{i}\left(A^{k}\right)=\lambda_{i}(A)^{k}
$$

hence trace of powers of companion matrix gives sum of root powers

$$
\operatorname{trace} C_{p}^{k}=\sum_{i=1}^{n} x_{i}^{k}
$$

symmetric functions of roots

if $q=q_{0}+q_{1} x+\ldots q_{m} x^{m}$ then

$$
\sum_{i=1}^{n} q\left(x_{i}\right)=\operatorname{trace} q\left(C_{p}\right)
$$

because

$$
\sum_{i=1}^{n} q\left(x_{i}\right)=\sum_{i=1}^{n} \sum_{j=0}^{m} q_{j} x_{i}^{j}=\sum_{j=0}^{m} q_{j} \operatorname{trace} C_{p}^{j}=\operatorname{trace} \sum_{j=0}^{m} q_{j} C_{p}^{j}=\operatorname{trace} q\left(C_{P}\right)
$$

Hermite form

given polynomials p and q, the Hermite form is the symmetric matrix

$$
H_{q}(p)=V^{T} \operatorname{diag}\left(q\left(x_{1}\right), \ldots, q\left(x_{n}\right)\right) V
$$

- with $q(x)=1$, we have

$$
H_{1}(p)=V^{T} V=\left[\begin{array}{cccc}
s_{0} & s_{1} & \ldots & s_{n-1} \\
s_{1} & s_{2} & \ldots & s_{n} \\
\vdots & & & \vdots \\
s_{n-1} & s_{n} & \ldots & s_{2 n-2}
\end{array}\right] \quad s_{k}=\sum_{j=1}^{n} x_{j}^{k}
$$

- can compute using $s_{k}=\operatorname{trace} C_{p}^{k}$
- signature of M is the number of positive eigenvalues minus the number of negative eigenvalues
- theorem: signature of $H_{1}(p)=$ the number of real roots of p. rank $H_{1}(p)=$ the number of distinct complex roots of p

Hermite form

- $p=x^{2}+2 x^{2}+3 x+4$
- $H_{1}(p)=\left[\begin{array}{ccc}3 & -2 & -2 \\ -2 & -2 & -2 \\ -2 & -2 & 18\end{array}\right]$
- $H_{1}(p)$ has one negative and two positive eigenvalues
- hence p has three simple roots, one of them is real

scalar polynomials

when do two polynomials $f, g \in \mathbb{C}[x]$ have a common root?

$$
\begin{gathered}
\operatorname{gcd}\{f, g\}=1 \quad \Longleftrightarrow \quad \text { there exist } a, b \in \mathbb{C}[x] \text { such that } \\
a f+b g=1
\end{gathered}
$$

- theorem: can always choose $\operatorname{deg} a<\operatorname{deg} g$ and $\operatorname{deg} b<\operatorname{deg} f$

linear equations

suppose $\operatorname{deg} f=l$, $\operatorname{deg} g=m$, and the above degree bounds then the linear equation $a f+b g=1$ is

this matrix is called the Sylvester matrix of f and g, written $\operatorname{syl}(f, g, x)$ its determinant is called the resultant of f and g, written $\operatorname{res}(f, g, x)$

example

suppose

$$
f=2 x^{2}+3 x+1 \quad g=7 x^{2}+x+3
$$

is $1 \in \operatorname{ideal}\{f, g\}$, or equivalently, does $\operatorname{gcd}\{f, g\}=1$?
the resolvent is

$$
\operatorname{res}(f, g, x)=\operatorname{det}\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
3 & 1 & 1 & 3 \\
2 & 3 & 7 & 1 \\
0 & 2 & 0 & 7
\end{array}\right]=153
$$

since this is nonzero, we have $\operatorname{gcd}\{f, g\}=1$

multivariable polynomials

we can compute the resultant for multivariable polynomials, with respect to a single variable, e.g.,

$$
f=x y-1 \quad g=x^{2}+y^{2}-4
$$

to compute $\operatorname{res}(f, g, x)$, view f, g as polynomials in x with coeffs. in $\mathbb{K}[y]$

$$
\begin{aligned}
\operatorname{res}(f, g, x) & =\operatorname{det}\left[\begin{array}{ccc}
-1 & 0 & -4+y^{2} \\
y & -1 & 0 \\
0 & y & 1
\end{array}\right] \\
& =y^{4}-4 y^{2}+1
\end{aligned}
$$

$\operatorname{res}(f, g, x)$ eliminates x leaving a polynomial in y

example

with $f=x y-1$ and $g=x^{2}+y^{2}-4$ we have $a f+b g=1$ of appropriate degrees is equivalent to

$$
\left[\begin{array}{ccc}
-1 & 0 & -4+y^{2} \\
y & -1 & 0 \\
0 & y & 1
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
b_{0}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

using the explicit formula for the matrix inverse gives

$$
\left[\begin{array}{l}
a_{0} \\
a_{1} \\
b_{0}
\end{array}\right]=\frac{1}{\operatorname{res}(f, g, x)}\left[\begin{array}{ccc}
-1 & -4 y+y^{3} & -4+y^{2} \\
-y & -1 & -4 y+y^{3} \\
y^{2} & y & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

hence

$$
a=\frac{-x y-1}{\operatorname{res}(f, g, x)} \quad b=\frac{y^{2}}{\operatorname{res}(f, g, x)}
$$

example continued

so we have $f=x y-1$ and $g=x^{2}+y^{2}-4$ and

$$
a f+b g=1
$$

where

$$
a=\frac{-x y-1}{y^{4}-4 y^{2}+1} \quad b=\frac{y^{2}}{y^{4}-4 y^{2}+1}
$$

multiplying by $\operatorname{res}(f, g, x)=y^{4}-4 y^{2}+1$ gives

$$
\hat{a} f+\hat{b} g=\operatorname{res}(f, g, x)
$$

where $\hat{a}=-x y-1$ and $\hat{b}=y^{2}$
elimination and resultants
we have

$$
\operatorname{res}(f, g, x) \in \operatorname{ideal}\{f, g\}
$$

because the explicit formula for the matrix inverse gives

$$
\operatorname{syl}\left(f, g, x_{1}\right)^{-1}=\frac{1}{\operatorname{res}\left(f, g, x_{1}\right)} \operatorname{adjoint}\left(\operatorname{syl}\left(f, g, x_{1}\right)\right)^{T}
$$

and since the entries of $\operatorname{adjoint}(A)$ are polynomials in the entries of A, the polynomials $\hat{a}=a \operatorname{res}(f, g, x)$ and $\hat{b}=b \operatorname{res}(f, g, x)$ satisfy

$$
\hat{a} f+\hat{b} g=\operatorname{res}(f, g, x)
$$

elimination and resultants
therefore the resultant is a member of the first elimination ideal

$$
f, g \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \quad \Longrightarrow \quad \operatorname{res}\left(f, g, x_{1}\right) \in I_{1}
$$

where $I_{1}=\operatorname{ideal}\{f, g\} \cap \mathbb{K}\left[x_{2}, \ldots, x_{n}\right]$

- implicitization of paramaterized curves
- solution of two polynomial equations in two variables

another view of resultants

if $p\left(x_{0}\right)=q\left(x_{0}\right)=0$ then
$\left[\begin{array}{cccccccc}p_{n} & p_{n-1} & \cdots & p_{1} & p_{0} & & \\ & p_{n} & & & \ddots & & \\ & & \ddots & & & & \\ & & & & & p_{1} & p_{0} & \\ & & & & & p_{2} & p_{1} & p_{0} \\ q_{m} & q_{m-1} & \ldots & q_{0} & & & & \\ & q_{m} & & & \ddots & & \\ & & \ddots & & & & \\ & & & & & q_{1} & q_{0} & \\ & & & & & q_{2} & q_{1} & q_{0}\end{array}\right]\left[\begin{array}{c}x_{0}^{n+m-1} \\ x_{0}^{n+m-2} \\ \vdots \\ \\ \\ \end{array}\right.$
resultants and companion matrices

$$
\operatorname{res}(p, q, x)=p_{n}^{m} \operatorname{det} q\left(C_{p}\right)
$$

- no proofs today...

discriminants

for a univariate polynomial p, the discriminant is

$$
\operatorname{dis}(p)=(-1)^{\binom{n}{2}} \frac{1}{p_{n}} \operatorname{res}\left(p, p^{\prime}, x\right)
$$

- if p and its derivative p^{\prime} have a common root, then p has a root of multiplicity 2 or more
discriminants
- if $p=a x^{2}+b x+c$ then $\operatorname{dis}(p)=b^{2}-4 a c$
- if $p=a x^{3}+b x^{2}+c x+d$ then

$$
\operatorname{dis}(p)=-27 a^{2} d^{2}+18 a d c b+b^{2} c^{2}-4 b^{3} d-4 a c^{3}
$$

