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companion matrix

write p = xn + pn−1x
n−1 + · · ·+ p1x+ p0 in terms of its roots x1, . . . , xn

p(x) =

n∏
k=1

(x− xk)

define the n× n companion matrix

Cp =


0 0 . . . 0 −p0
1 0 . . . 0 −p1
0 1 . . . 0 −p2
...

. . .
...

0 0 . . . 1 −pn−1


the characteristic polynomial of Cp is p

det(xI − Cp) = p
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eigenvectors of the companion matrix

define the Vandermonde matrix

V =


1 x1 . . . xn−11

1 x2 . . . xn−12
...

...
1 xn . . . xn−1n



I V Cp = diag(x1, . . . , xn)V

I V is nonsingular iff the xi are distinct

I columns of V −1 are coefficients of Lagrange polynomials Lj(xi) = δij

because
[
1 x1 . . . xn−11

]
V −1 = eT1 V V

−1 = eT1
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example

I p = (x− 1)(x− 2)(x− 5)

I Cp =

0 0 10
1 0 −17
0 1 7



I V =

1 1 1
1 2 4
1 5 25

 V −1 = 1
12

 30 −20 2
−21 24 −3
3 −4 1



I L1(x) = (30− 21x+ 3x2)/12 = (x− 2)(x− 5)/4
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trace of the companion matrix

for any A ∈ Cn×n we have

traceA =

n∑
i=1

λi(A) λi(A
k) = λi(A)

k

hence trace of powers of companion matrix gives sum of root powers

traceCk
p =

n∑
i=1

xki
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symmetric functions of roots

if q = q0 + q1x+ . . . qmx
m then

n∑
i=1

q(xi) = trace q(Cp)

because

n∑
i=1

q(xi) =

n∑
i=1

m∑
j=0

qjx
j
i =

m∑
j=0

qj traceC
j
p = trace

m∑
j=0

qjC
j
p = trace q(CP )
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Hermite form

given polynomials p and q, the Hermite form is the symmetric matrix

Hq(p) = V T diag(q(x1), . . . , q(xn))V

I with q(x) = 1, we have

H1(p) = V TV =


s0 s1 . . . sn−1
s1 s2 . . . sn
...

...
sn−1 sn . . . s2n−2

 sk =

n∑
j=1

xkj

I can compute using sk = traceCk
p

I signature of M is the number of positive eigenvalues minus the number of
negative eigenvalues

I theorem: signature of H1(p) = the number of real roots of p.

rankH1(p) = the number of distinct complex roots of p
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Hermite form

I p = x2 + 2x2 + 3x+ 4

I H1(p) =

 3 −2 −2
−2 −2 −2
−2 −2 18



I H1(p) has one negative and two positive eigenvalues

I hence p has three simple roots, one of them is real
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scalar polynomials

when do two polynomials f, g ∈ C[x] have a common root?

gcd{f, g} = 1 ⇐⇒
there exist a, b ∈ C[x] such that

af + bg = 1

I theorem: can always choose deg a < deg g and deg b < deg f
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linear equations

suppose deg f = l, deg g = m, and the above degree bounds

then the linear equation af + bg = 1 is

l +m





f0 g0

f1
.

.
.

g1
.

.
....

.
.

.
.

.
.

...
.

.
.

g0

fl
.

.
.

f0
... g1

.
.

.
f1 gm

...
.

.
.

...
.

.
.

...
fl gm





a0
...
...

am−1
b0
...

bl−1


=



1
0
...

...
0


︸ ︷︷ ︸

m

︸ ︷︷ ︸
l

this matrix is called the Sylvester matrix of f and g, written syl(f, g, x)

its determinant is called the resultant of f and g, written res(f, g, x)
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example

suppose
f = 2x2 + 3x+ 1 g = 7x2 + x+ 3

is 1 ∈ ideal{f, g}, or equivalently, does gcd{f, g} = 1?

the resolvent is

res(f, g, x) = det


1 0 3 0
3 1 1 3
2 3 7 1
0 2 0 7

 = 153

since this is nonzero, we have gcd{f, g} = 1
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multivariable polynomials

we can compute the resultant for multivariable polynomials, with respect to a
single variable, e.g.,

f = xy − 1 g = x2 + y2 − 4

to compute res(f, g, x), view f, g as polynomials in x with coeffs. in K[y]

res(f, g, x) = det

−1 0 −4 + y2

y −1 0
0 y 1


= y4 − 4y2 + 1

res(f, g, x) eliminates x leaving a polynomial in y
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example

with f = xy−1 and g = x2+y2−4 we have af + bg = 1 of appropriate degrees
is equivalent to −1 0 −4 + y2

y −1 0
0 y 1

a0a1
b0

 =

10
0


using the explicit formula for the matrix inverse givesa0a1

b0

 =
1

res(f, g, x)

−1 −4 y + y3 −4 + y2

−y −1 −4 y + y3

y2 y 1

10
0



hence

a =
−xy − 1

res(f, g, x)
b =

y2

res(f, g, x)
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example continued

so we have f = xy − 1 and g = x2 + y2 − 4 and

af + bg = 1

where

a =
−xy − 1

y4 − 4y2 + 1
b =

y2

y4 − 4y2 + 1

multiplying by res(f, g, x) = y4 − 4y2 + 1 gives

âf + b̂g = res(f, g, x)

where â = −xy − 1 and b̂ = y2
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elimination and resultants

we have

res(f, g, x) ∈ ideal{f, g}

because the explicit formula for the matrix inverse gives

syl(f, g, x1)
−1 =

1

res(f, g, x1)
adjoint

(
syl(f, g, x1)

)T

and since the entries of adjoint(A) are polynomials in the entries of A, the

polynomials â = a res(f, g, x) and b̂ = b res(f, g, x) satisfy

âf + b̂g = res(f, g, x)
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elimination and resultants

therefore the resultant is a member of the first elimination ideal

f, g ∈ K[x1, . . . , xn] =⇒ res(f, g, x1) ∈ I1

where I1 = ideal{f, g} ∩K[x2, . . . , xn]

I implicitization of paramaterized curves

I solution of two polynomial equations in two variables



17

another view of resultants

if p(x0) = q(x0) = 0 then

pn pn−1 . . . p1 p0

pn
. . .

. . .

p1 p0
p2 p1 p0

qm qm−1 . . . q0

qm
. . .

. . .

q1 q0
q2 q1 q0





xn+m−1
0

xn+m−2
0

...

x0
1


=



p(x0)x
m−1
0

p(x0)x
m−2
0

...
p(x0)x0
p(x0)

q(x0)x
n−1
0

q(x0)x
n−2
0

...
q(x0)x0
q(x0)


= 0
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resultants and companion matrices

res(p, q, x) = pmn det q(Cp)

I no proofs today . . .
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discriminants

for a univariate polynomial p, the discriminant is

dis(p) = (−1)(
n
2) 1

pn
res(p, p′, x)

I if p and its derivative p′ have a common root, then p has a root of multi-
plicity 2 or more
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discriminants

I if p = ax2 + bx+ c then dis(p) = b2 − 4ac

I if p = ax3 + bx2 + cx+ d then

dis(p) = −27a2d2 + 18adcb+ b2c2 − 4b3d− 4ac3


