EE464 Semialgebraic Lifting

Primal and Dual Formulations So Far

Positivity of one polynomial: does there exist x such that $f(x)<0$?

- Dual SDP relaxation: f is SOS
- Primal SDP relaxation: lifting

Semialgebraic feasibility: does there exist x such that $f_{i}(x) \geq 0$ and $h_{j}(x)=0$ for all i, j

- Positivstellensatz is exact dual. Finite degree condition is an SDP: does there exist $s_{i}, r_{i j}, t_{i}$ such that $s_{i}, r_{i j}$ is SOS and

$$
-1=s_{0}+\sum_{i} s_{i} f_{i}+\sum_{i, j} r_{i j} f_{i} f_{j}+\cdots+\sum_{i} t_{i} h_{i}
$$

- Questions: what is the dual? It should give a convex relaxation of the primal feasible set

Valid Inequalities for the Primal

$$
\begin{aligned}
& \text { Does there exist } x \in \mathbb{R}^{n} \text { such that } \\
& f_{i}(x) \geq 0 \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

We can add a parametrized family of valid inequalities of the form

$$
\begin{array}{r}
f_{i}(x)\left(a_{00}+a_{10} x+a_{01} y+a_{11} x y+\ldots\right)^{2} \geq 0 \\
\quad\left(a_{00}+a_{10} x+a_{01} y+a_{11} x y+\ldots\right)^{2} \geq 0
\end{array}
$$

- Any vector a of coefficients defines a valid inequality
- The multipliers are squares; i.e., extreme rays of the SOS cone The Lagrange duality construction forms linear combinations of these, resulting in a dual with SOS multipliers

Lifting

We can represent these multipliers as

$$
a^{T} z=\left[\begin{array}{lllll}
a_{00} & a_{10} & a_{01} & a_{11} & \ldots
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
\vdots
\end{array}\right]
$$

so an equivalent feasibility problem is: does there exist x such that

$$
\begin{aligned}
f_{i}(x)\left(a^{T} z\right)^{2} \geq 0 & \text { for all } a, i \\
\left(a^{T} z\right)^{2} \geq 0 & \text { for all } a
\end{aligned}
$$

now lift; let $Y=z z^{T}$, then we have

$$
\left(a^{T} z\right)^{2}=a^{T} Y a
$$

Lifted Problem

The lifted problem is: does there exist $x \in \mathbb{R}^{n}$ such that

$$
\begin{array}{rlrl}
a^{T}\left(f_{i}(x) Y\right) a & \geq 0 \quad \text { for all } a, i \\
a^{T} Y a & \geq 0 \quad \text { for all } a \\
Y & =z z^{T} &
\end{array}
$$

Since Y defines a quadratic form, we have equivalently

$$
\begin{aligned}
f_{i}(x) Y & \succeq 0 \quad \text { for all } i \\
Y & \succeq 0 \\
Y & =z z^{T}
\end{aligned}
$$

Example

suppose $f(x)=x^{2}+3 x+1$; does there exist x such that $f(x)<0$?
Apply the lifting

$$
Y=\left[\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right]^{T}=\left[\begin{array}{ccc}
1 & x & x^{2} \\
x & x^{2} & x^{3} \\
x^{2} & x^{3} & x^{4}
\end{array}\right]
$$

Then

$$
\begin{aligned}
f(x) Y & =\left[\begin{array}{ccc}
x^{2}+3 x+1 & x^{3}+3 x^{2}+x & x^{4}+3 x^{3}+x^{2} \\
& x^{4}+3 x^{3}+x^{2} & x^{5}+3 x^{4}+x^{3} \\
x^{6}+3 x^{5}+x^{4}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
Y_{13}+3 Y_{12}+Y_{11} & Y_{23}+3 Y_{13}+Y_{12} & Y_{33}+3 Y_{23}+Y_{13} \\
. \cdot & \cdot & * \\
. \cdot & * & *
\end{array}\right]
\end{aligned}
$$

Primal SDP Relaxation

Relaxing the constraint $Y=z z^{T}$, we have the SDP

$$
\begin{aligned}
Y & \text { is Hankel } \\
Y_{11} & =1 \\
Z & =\left[\begin{array}{ll}
Y_{13}+3 Y_{12}+Y_{11} & Y_{23}+3 Y_{13}+Y_{12} \\
Y_{23}+3 Y_{13}+Y_{12} & Y_{33}+3 Y_{23}+Y_{13}
\end{array}\right] \\
Z & \succeq 0 \\
Y & \succeq 0
\end{aligned}
$$

- We have relaxed the valid inequality $f(x) Y \succeq 0$ to positivity of its principal 2×2 submatrix
- We can include as many monomials z as we like

SDP Dual

The SDP dual is: does there exist α, λ, P such that

$$
\begin{aligned}
& \alpha>0
\end{aligned}
$$

To interpret this, multiply left and right by z^{T} and z, giving

$$
\begin{array}{r}
-\alpha-\left(x^{2}+3 x+1\right)\left(P_{11}+2 P_{12} x+P_{22} x^{2}\right) \text { is SOS } \\
\left(P_{11}+2 P_{12} x+P_{22} x^{2}\right) \text { is SOS }
\end{array}
$$

that is

$$
-\alpha=s_{0}+s_{1} f
$$

Positivstellensatz and Duality

We have the Positivstellensatz refutation

$$
-\alpha=s_{0}+\sum_{i} s_{i} f_{i}
$$

- Dual SDP relaxation: express the SOS constraints as SDP constraints
- Primal SDP relaxation: relax the lifting

$$
\begin{aligned}
f_{i}(x) Y & \succeq 0 \quad \text { for all } i \\
Y & \succeq 0 \\
Y_{11} & =1 \\
Y & =\left[\begin{array}{c}
1 \\
x \\
\vdots
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
\vdots
\end{array}\right]^{T}
\end{aligned}
$$

Convex Relaxation of Semialgebraic Sets

Given a semialgebraic set, we have the lifting

$$
\begin{aligned}
f_{i}(x) Y & \succeq 0 \\
Y & \succeq 0 \\
Y_{11} & =1 \\
Y & =\left[\begin{array}{c}
1 \\
x \\
\vdots
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
\vdots
\end{array}\right]^{T}
\end{aligned}
$$

- Projecting the feasible set onto the space spanned by x gives a convex relaxation of the original semialgebraic set
- We don't need to compute the projection explicitly
- To tighten the relaxation, include more monomials in Y - equivalently, increase the degree of the multipliers in the refutation

The Cut Polytope

The feasible set of the MAXCUT problem is

$$
C=\left\{X \in \mathbb{S}^{n} \mid X=v v^{T}, v \in\{-1,1\}^{n}\right\}
$$

A simple SDP relaxation gives the outer approximation to its convex hull Here $n=11$; the set has affine dimension 55 ; a projection is shown below

A General Scheme

Distinguished Representations

We have a basic semialgebraic S

$$
S=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0 \text { for all } i=1, \ldots, m\right\}
$$

Which polynomials are non-negative on S ?

- Every polynomial in cone $\left\{g_{1}, \ldots, g_{m}\right\}$ is non-negative on S
- But are there others? Recall radicality of ideals.

The Positivstellensatz gives an exact test, since $f(x) \geq 0$ for all $x \in S$ iff

$$
\left\{x \in \mathbb{R}^{n} \mid f(x)<0, g_{i}(x) \geq 0\right\} \text { is empty }
$$

Distinguished Representations

If S is compact, then Schmüdgen showed

$$
f(x)>0 \text { for all } x \in S \quad \Longrightarrow \quad f \in \operatorname{cone}\left\{g_{1}, \ldots, g_{m}\right\}
$$

- More explicitly, this means

$$
f=s_{0}+\sum_{i} s_{i} g_{i}+\sum_{i, j} r_{i j} g_{i} g_{j}+\cdots
$$

for some SOS polynomials $s_{i}, r_{i j}, \ldots$

- Also notice

$$
f(x) \geq 0 \text { for all } x \in S \quad \Longleftarrow \quad f \in \operatorname{cone}\left\{g_{1}, \ldots, g_{m}\right\}
$$

Certificate of Positivity

The Positivstellensatz implies $f(x) \geq 0$ on S if and only if

$$
s f=1+s_{0}+\sum_{i} s_{i} g_{i}+\sum_{i, j} r_{i j} g_{i} g_{j}+\cdots
$$

- Schmüdgen's distinguished representation implies that, to prove strict positivity, one can assume the multiplier s is a nonnegative constant
- i.e., one can prove positivity using fewer axioms. Consequently
- proofs may become longer
- need assumptions on S
- So we can fix the multiplier s, without theoretical loss, but this may require higher degree certificates
- Theoretical justification for optimization of polynomials over compact domains; e.g., Lyapunov stability in a basin of attraction

Reducing the Axiom Set

If there is a single polynomial g_{k} such that

$$
\left\{x \in \mathbb{R}^{n} \mid g_{k}(x) \geq 0\right\} \text { is compact }
$$

then Putinar's result holds:

$$
f(x)>0 \text { for all } x \in S \quad \Longrightarrow \quad f=s_{0}+\sum_{i} s_{i} g_{i} \text { for some SOS } s_{i}
$$

- Stronger assumptions about S mean we can reduce axiom set further; we don't need to take products

Handelman Representations

Suppose that S is defined by linear inequalities

$$
S=\left\{x \in \mathbb{R}^{n} \mid b-A x \geq 0\right\}
$$

and S is compact, with nonempty interior.

Then, if $f(x)>0$, we have for $W \subset \mathbb{N}^{m}$

$$
f=\sum_{\alpha \in W} c_{\alpha} \prod_{i=1}^{m}\left(b_{i}-a_{i}^{T} x\right)^{\alpha_{i}} \quad \text { for some } c_{\alpha}>0
$$

- No SOS polynomials, just constants c_{α}. Hence solvable using LP
- But proofs may be extremely long

Distinguished Representations

	Products	No products		
SOS coefficients	Schmüdgen compactness	Putinar compactness++ + Scalar coefficientsHandelman compactness linear inequalities		Lagrange
:---:				
constraint qualifications				

- Strong duality results
- Positivstellensatz requires no assumptions
- Tradeoffs between computation, assumptions, and proof lengths

