EE464 Sparse Polynomials

Minkowski sum

for subsets $S, T \subset \mathbb{R}^{n}$, the Minkowski sum is

$$
S+T=\{x+y \mid x \in S, y \in T\}
$$

also for $\lambda \in \mathbb{R}$, define

$$
\lambda S=\{\lambda x \mid x \in S\}
$$

convolution

for $S \in \mathbb{R}^{N}$ define the indicator function $I_{S}: \mathbb{R}^{N} \rightarrow \mathbb{R}$

$$
I_{S}(x)= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { otherwise }\end{cases}
$$

then the Minkowski sum corresponds to convolution

$$
I_{S+T}=I_{S} * I_{T}
$$

that is

$$
I_{S+T}(x)=\int_{y} I_{S}(x-y) I_{T}(y) d y
$$

if S and T are convex, so is $S+T$

to see this, notice that the Cartesian product is convex

$$
S \times T=\left\{\left.\left[\begin{array}{l}
x \\
y
\end{array}\right] \right\rvert\, x \in S, y \in T\right\}
$$

and the sum $S+T$ is image of the $S \times T$ under the linear map

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto x+y
$$

properties
in general $S+S \neq 2 S$, for example

$$
S=\{0,1\} \quad \text { and } \quad S+S=\{0,1,2\}
$$

if S is convex, then

$$
(\lambda+\mu) S=\lambda S+\mu S
$$

polyhedra

a set $S \subset \mathbb{R}^{n}$ is called a polyhedron if it is the intersection of a finite set of closed halfspaces

$$
S=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

- a bounded polyhedron is called a polytope
- the dimension of a polyhedron is the dimension of its affine hull

$$
\operatorname{affine}(S)=\{\lambda x+\nu y \mid \lambda+\nu=1, x, y \in S\}
$$

- if $b=0$ the polyhedron is a cone
- every polyhedron is convex

faces of polyhedra

given $a \in \mathbb{R}^{n}$, the corresponding face of polyhedron P is

$$
\text { face }(a, P)=\left\{x \in P \mid a^{T} x \geq a^{T} y \text { for all } y \in P\right\}
$$

- faces of dimension 0 are called vertices

$$
\begin{array}{ll}
1 & \text { edges } \\
d-1 & \text { facets, where } d=\operatorname{dim}(P)
\end{array}
$$

- facets are also said to have codimension 1

faces of polyhedra

- if F is a face of G, and G is a face of P then F is a face of P i.e., is a face of is transitive
- face $(a, S+T)=$ face $(a, S)+\operatorname{face}(a, T)$

- in particular, if x is a vertex of $S+T$, then

$$
x=y+z \quad \text { for some } y \text {, a vertex of } S \text { and } z \text {, a vertex of } T
$$

and the vertices y and z are unique

positive polynomials

suppose $f=c_{d} x^{d}+c_{d-1} x^{d-1}+\cdots+c_{1} x+c_{0}$; then

$$
f \text { is PSD } \quad \Longrightarrow \quad d \text { is even, } c_{d}>0 \text { and } c_{0} \geq 0
$$

what is the analogue in n variables?

- suppose $f=x^{3} y^{2}+x y+1$
substitute $x=t$ and $y=t$, i.e., evaluate f along the curve $x=y$,

$$
\hat{f}=t^{5}+t^{2}+1
$$

so clearly f is not PSD
this suggests that f is PSD implies f has even degree

- but for $f=x^{3} y^{2}-x y^{4}+x^{2} y^{2}+1$ the same substitution gives

$$
\hat{f}=t^{4}+1
$$

the Newton polytope

suppose

$$
f=\sum_{\alpha \in M} c_{\alpha} x^{\alpha}
$$

the set of monomials $M \subset \mathbb{N}^{n}$ is called the frame of f
the Newton polytope of f is its convex hull

$$
\operatorname{new}(f)=\operatorname{co}(\operatorname{frame}(f))
$$

the example shows

$$
f=7 x^{4} y+x^{3} y+x^{2} y^{4}+x^{2}+3 x y
$$

necessary condition for nonnegativity

we'll evaluate the polynomial f along the curve

$$
\begin{aligned}
& x_{1}=z_{1} t^{a_{1}} \\
& \vdots \\
& x_{n}=z_{n} t^{a_{n}}
\end{aligned}
$$

for $f=\sum_{\alpha \in M} c_{\alpha} x^{\alpha}$ define

$$
\hat{f}=\sum_{\alpha \in M} c_{\alpha} z^{\alpha} t^{a^{T} \alpha}
$$

e.g., for $f=x^{3} y+2 x y^{7}$ we have

$$
\hat{f}=z_{1}^{3} z_{2} t^{3 a_{1}+a_{2}}+2 z_{1} z_{2}^{7} t^{a_{1}+7 a_{2}}
$$

necessary condition for nonnegativity

if $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is PSD , then
every vertex of new (f) has even coordinates, and a positive coefficient

- $f=7 x^{4} y+x^{3} y+x^{2} y^{4}+x^{2}+3 x y$
is not PSD, since term $3 x y$ has coords $(1,1)$

- $f=7 x^{4} y+x^{3} y-x^{2} y^{4}+x^{2}+3 y^{2}$
is not PSD, since term $-x^{2} y^{4}$ has a negative coefficient

proof

if β is a vertex of new (f), then there is some $a \in \mathbb{R}^{n}$ such that

$$
a^{T} \beta>a^{T} \alpha \text { for all } \alpha \in M
$$

evaluating \hat{f} along the curve $x_{i}=z_{i} t^{a_{i}}$, gives

$$
\hat{f}=c_{\beta} z^{\beta} t^{a^{T} \beta}+\text { terms of lower degree in } t
$$

as $t \rightarrow \infty$, the first terms dominates, so

$$
c_{\beta} z^{\beta} \geq 0 \text { for all } z \in \mathbb{R}^{n}
$$

assume f is PSD , then

- picking $z=1$ implies c_{β} must be positive

- picking $z_{j}=-1$ and $z_{i}=1$ for $i \neq j$ implies β_{i} must be even

halfspaces containing the Newton polytope

the Newton polytope of f is contained with the halfspace specified by a, b

$$
\operatorname{new}(f) \subset\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq b\right\}
$$

if and only if

$$
\lim _{t \rightarrow \infty}\left|t^{-b} \hat{f}\right|<\infty \quad \text { for all } z \in \mathbb{R}^{n}
$$

example

suppose $a=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $b=6$

$$
f=-x^{4} y^{2}+x^{2} y^{4}+x y+1
$$

then

$$
\hat{f}=\left(-z_{1}^{4} z_{2}^{2}+z_{1}^{2} z_{2}^{4}\right) t^{6}+z_{1} z_{2} t^{2}+1
$$

we have

$$
\operatorname{new}(f) \subset\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq b\right\} \quad \Longrightarrow \quad \lim _{t \rightarrow \infty}\left|t^{-b} \hat{f}\right|<\infty
$$

the converse also holds, since by picking z arbitrarily we can arrange for the leading coefficient of \hat{f} to be non-zero

Newton polytopes of a product

$$
\operatorname{new}(f g)=\operatorname{new}(f)+\operatorname{new}(g)
$$

$$
\begin{aligned}
& f=x^{4} y^{2}+2 x^{2} y^{3}-x^{2}-x y^{2} \\
& g=x^{3}-y+1
\end{aligned}
$$

$$
f g=x^{7} y^{2}+2 x^{5} y^{3}-x^{5}-x^{4} y^{3}-2 x^{2} y^{4}+2 x^{2} y^{3}
$$

Newton polytopes

we'd like to show new $(f g)=\operatorname{new}(f)+$ new (g)
first, we'll show

$$
\operatorname{new}(f g) \subset \operatorname{new}(f)+\operatorname{new}(g)
$$

to see this, if $f=\sum_{\alpha} c_{\alpha} c^{\alpha}$ and $g=\sum_{\beta} d_{\beta} x^{\beta}$ then

$$
f g=\sum_{\alpha} \sum_{\beta} c_{\alpha} d_{\beta} x^{\alpha+\beta}
$$

so frame $(f g) \subset$ frame $(f)+\operatorname{frame}(g)$
also we have $\operatorname{co}(S+T) \subset \operatorname{co}(S)+\operatorname{co}(T)$

Newton polytopes

it remains to show

$$
\operatorname{new}(f g) \supset \operatorname{new}(f)+\operatorname{new}(g)
$$

we'll show that if γ is a vertex of $\operatorname{new}(f)+\operatorname{new}(g)$ then $\gamma \in \operatorname{new}(f g)$
we know $\gamma=\alpha+\beta$ for unique $\alpha \in \operatorname{frame}(f)$ and $\beta \in \operatorname{frame}(g)$
α and β are unique since γ is a vertex
the coefficient of x^{γ} in $f g$ is $c_{\alpha} d_{\beta}$, which cannot be zero, so $\gamma \in \operatorname{new}(f g)$

Newton polytopes of squares

consequently we have

$$
\operatorname{new}\left(f^{n}\right)=n \operatorname{new}(f)
$$

with

$$
f=x^{4} y^{2}+2 x^{2} y^{3}-x^{2}-x y^{2}
$$

we have

$$
\begin{aligned}
f^{2}=x^{8} y^{4} & +4 x^{6} y^{5}-2 x^{6} y^{2}-2 x^{5} y^{4} \\
& +4 x^{4} y^{6}-4 x^{4} y^{3} \\
& +x^{4}-4 x^{3} y^{5}+2 x^{3} y^{2}+x^{2} y^{4}
\end{aligned}
$$

Newton polytopes and inequalities

if f and g are PSD polynomials then

$$
f(x) \leq g(x) \text { for all } x \in \mathbb{R}^{n} \quad \Longrightarrow \quad \operatorname{new}(f) \subset \operatorname{new}(g)
$$

we'll show that any halfspace containing new (g) also contains new (f)
if $\operatorname{new}(g) \subset\left\{x \mid a^{T} x \leq b\right\}$ then

$$
\lim _{t \rightarrow \infty} t^{-b} \hat{g}<\infty \quad \text { for all } z
$$

since $0 \leq f \leq g$ we therefore have the same holds for \hat{f}, and so

$$
\operatorname{new}(f) \subset\left\{x \mid a^{T} x \leq b\right\}
$$

example

$$
f=x^{4} y^{2}+2 x^{2} y^{3}-x^{2}-x y^{2}
$$

$$
\operatorname{new}\left(f^{2}\right)
$$

$\operatorname{new}\left(f^{2}\left(x^{2} y^{2}+x^{4}+1\right)\right)$

sparse SOS decomposition

this tells us which monomials we have in an SOS decomposition

$$
f=\sum_{i=1}^{t} g_{i}^{2} \quad \Longrightarrow \quad \operatorname{new}\left(g_{i}\right) \subset \frac{1}{2} \operatorname{new}(f)
$$

because $0 \leq g_{i}^{2} \leq f$ so

$$
\begin{aligned}
\operatorname{new}(f) & \supset \operatorname{new}\left(g_{i}^{2}\right) \\
& =2 \operatorname{new}\left(g_{i}\right)
\end{aligned}
$$

this holds for every SOS decomposition of f

example: sparse SOS decomposition

find an SOS representation for

$$
f=4 x^{4} y^{6}+x^{2}-x y^{2}+y^{2}
$$

the squares in an SOS decomposition can only contain the monomials

$$
\operatorname{new}\left(\frac{1}{2} f\right) \cap \mathbb{N}^{n}=\left\{x^{2} y^{3}, x y^{2}, x y, x, y\right\}
$$

without using sparsity, we would include all 21 monomials of degree <5 in the SDP
with sparsity, we only need 5 monomials

example continued

we find

$$
\begin{aligned}
& f=4 x^{4} y^{6}+x^{2}-x y^{2}+y^{2} \\
& f=\left[\begin{array}{c}
y \\
x \\
x y \\
x y^{2} \\
x^{2} y^{3}
\end{array}\right]^{T}\left[\begin{array}{ccccc}
1 & 0 & -0.5 & 0 & -0.5 \\
0 & 1 & 0 & -0.5 & 0 \\
-0.5 & 0 & 1 & 0 & 0 \\
0 & -0.5 & 0 & 1 & 0 \\
-0.5 & 0 & 0 & 0 & 4
\end{array}\right]\left[\begin{array}{c}
y \\
x \\
x y \\
x y^{2} \\
x^{2} y^{3}
\end{array}\right]
\end{aligned}
$$

and the matrix is PSD

homogeneous polynomials

polynomial f is called homogeneous if

$$
f=\sum_{\alpha \in M} c_{\alpha} x^{\alpha} \quad \text { with } \quad \sum_{i=1}^{n} \alpha_{i}=d \text { for all } \alpha \in M
$$

if f is homogeneous, then for an SOS decomposition we need only look at monomials x^{β} such that

$$
\sum_{i=1}^{n} \beta_{i}=\frac{d}{2}
$$

for example

$$
\begin{aligned}
f & =4 x^{4}+4 x^{3} y-7 x^{2} y^{2}-2 x y^{3}+10 y^{4} \\
& =\left[\begin{array}{c}
x^{2} \\
x y \\
y^{2}
\end{array}\right]^{T}\left[\begin{array}{ccc}
4 & 2 & -\lambda \\
2 & -7+2 \lambda & -1 \\
-\lambda & -1 & 10
\end{array}\right]\left[\begin{array}{c}
x^{2} \\
x y \\
y^{2}
\end{array}\right]
\end{aligned}
$$

