EE464 Sparse Polynomials
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Minkowski sum

for subsets S, T C R", the Minkowski sum is

also for A € R, define
AS = {)\:v |zes}

[N
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convolution

for S € RYN define the indicator function Ig : RN — R

Ig(x)_{l ifxes

0 otherwise

then the Minkowski sum corresponds to convolution
Isyp =Is*Ir

that is
I5+T($) = /Is(x - y)IT(?J) dy
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properties

if S and T are convex, so is S + T

to see this, notice that the Cartesian product is convex
x

SxT = { { ]

y

and the sum S + T is image of the S x T under the linear map

T €S, y€T}

{m] =Tty
Yy
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properties

in general S+ 5 # 25, for example

S={0,1} and S+S5={0,1,2}

if S is convex, then

A+ u)S =AS+ uS
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polyhedra

aset S C R" is called a polyhedron if it is the intersection of a finite set of closed
halfspaces

S:{xGR”|Ax§b}

» a bounded polyhedron is called a polytope

» the dimension of a polyhedron is the dimension of its affine hull

aﬂine(S):{)\x+1/y|)\+1/:1, x,yeS}

» if b = 0 the polyhedron is a cone

» every polyhedron is convex
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faces of polyhedra

given a € R™, the corresponding face of polyhedron P is

face(a, P) = {xEP | aTxz > aTy for all yEP}

/— face([l l]T,P), dimension 1
Tn— face([2 l]T,P), dimension 0

»
»

» faces of dimension 0 are called vertices
1 edges
d—1 facets, where d = dim(P)

» facets are also said to have codimension 1
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faces of polyhedra

» if F'is a face of GG, and GG is a face of P then F'is a face of P
i.e., is a face of is transitive

» face(a, S +T) = face(a, S) + face(a, T)

\S T S+T
» in particular, if 2 is a vertex of S + T, then

T=y+z for some y, a vertex of S and z, a vertex of T'

and the vertices y and z are unique
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positive polynomials

suppose f = cqx? 4+ cq_1297 1 4+ -+ + ¢z + cp; then

fis PSD — dis even, cgq >0and cg >0

what is the analogue in n variables?
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example

» suppose f =3y +ay +1

substitute x = ¢ and y = ¢, i.e., evaluate f along the curve x =y,
f=t0+t2+1

so clearly f is not PSD

this suggests that f is PSD implies f has even degree

» but for f = 23y? — xy* + 22y + 1 the same substitution gives

f=tt+1
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the Newton polytope

suppose

f= Z Cax®

aceM
the set of monomials M C N” is called the frame of f

the Newton polytope of f is its convex hull s

new(f) = co(frame(f))

the example shows

f=Ta"y+23y+22y* + 22+ 32y N
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necessary condition for nonnegativity

we'll evaluate the polynomial f along the curve

r1 = z1t™

Ty = 2t
for f =3 carCar® define

f: Z CazoztaTa

aeM

e.g., for f = 23y + 22y” we have

f= zf 2o t30 T2 4 9o zg etz
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necessary condition for nonnegativity

if f €R[z1,...,zy,]is PSD, then

every vertex of new(f) has even coordinates, and a positive coefficient

> f=Taty+ 23y + 2yt + 22+ 32y

is not PSD, since term 3zy has coords (1,1)

> f=Taty+ a3y — 22yt + 2% + 392

is not PSD, since term —x2 3* has a negative
coefficient
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proof

if 8 is a vertex of new(f), then there is some a € R™ such that

aB>a%a forall e M

evaluating f along the curve z; = z;t%, gives
f =cszP19" B 1+ terms of lower de int
5 gree in

as t — 00, the first terms dominates, so

a

CBzﬁ > 0 for all z € R™

assume f is PSD, then

» picking z = 1 implies cg must be positive

» picking z; = —1 and z; =1 for ¢ # j implies 3; must be even

-
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halfspaces containing the Newton polytope

the Newton polytope of f is contained with the halfspace specified by a, b

new(f)C{xER"|aTx§b}

if and only if .
lim |t*bf| < o0 for all z € R"

t—o0
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example

suppose a = [1 l]T and b =6

f=—a2*y?+ 22y 42y +1 )

then o

f=(—22+ 220t + 212012 +1

we have

new(f)C{mER"\aTbe} = tlim |t_bf‘<oo

the converse also holds, since by picking z arbitrarily we can arrange for the
leading coefficient of f to be non-zero
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Newton polytopes of a product

new(fg) = new(f) + new(g)

2 gy?

f=ay?+22%3 — 2
g=a>—y+1

fg:$7y2+2x5y3_x5_x4y3_2m2y4_~_2x2y3

fg

®

o

O
Y.
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Newton polytopes

we'd like to show new(fg) = new(f) + new(g)

first, we'll show
new(fg) C new(f) + new(g)

to see this, if f =3 cac®and g=3 4 dgx? then
fg=3_ cadsa®™’
a B
so frame(fg) C frame(f) + frame(g)

also we have co(S +T') C co(S) + co(T)
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Newton polytopes

it remains to show

new(fg) D new(f) + new(g)

we'll show that if 7y is a vertex of new(f) + new(g) then v € new(fg)

we know v = a 4 3 for unique « € frame(f) and 8 € frame(g)

« and B are unique since 7y is a vertex

the coefficient of 27 in fg is codg, which cannot be zero, so v € new(fg)
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Newton polytopes of squares

consequently we have

new(f") = nnew(f)

with
Fe=aty? 122208 — 22 — 242
we have
F2 =Syt aaSy® —228y2 — 220y
+4xtyS —aatyd
pat—4ady® 4 2a%y? 4oty
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Newton polytopes and inequalities

if f and g are PSD polynomials then

f(z) < g(z) for all z € R™ = new(f) C new(g)

we'll show that any halfspace containing new(g) also contains new( f)
if new(g) C {« | a”x < b} then

lim t7%§ < oo for all z
t—o0

since 0 < f < g we therefore have the same holds for f, and so

new(f) C {z|a"z<b}
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example

f=m4y2+2x2y3—x2—xy2

new(f?)

new (f2(z%y? + 2t + 1))

- N W M O O N ©

9 10 11 12
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sparse SOS decomposition

this tells us which monomials we have in an SOS decomposition

f=d¢ = mew(g)C guew(s)

because 0 < g? < f so

new(f) D new(g?)
— 2new(g:)

this holds for every SOS decomposition of f
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example: sparse SOS decomposition

find an SOS representation for

f=datyS 1 a2 —xy?ty?

the squares in an SOS decomposition can only
contain the monomials

1
new(5f) NN" = {22y®, xy?, 2y, 7,9}

without using sparsity, we would include all
21 monomials of degree < 5 in the SDP

with sparsity, we only need 5 monomials

IS

O
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example continued

we find

$y2
$2y3

and the matrix is PSD
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homogeneous polynomials
polynomial f is called homogeneous if
n
f= anxa with Zai:dfor all o e M
acM i=1
if f is homogeneous, then for an SOS decomposition we need only look at mono-

mials z? such that
- d
2 0=y
=1

for example
f =4zt + 423y — 12%y% — 2293 + 1092

22174 2 -] [a2
= |xy 2 =742\ 1| |2y
y? —A -1 10 y?



