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EE464 Sum of Squares
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polynomial programming

so far

I polynomial equations over the complex field

objectives

I general quantified formulae

I with Boolean connectives

I polynomial equations, inequalities, and inequations over the reals

e.g., does there exist x such that for all y(
f(x, y) ≥ 0

)
∧
(
g(x, y) = 0

)
∨
(
h(x, y) 6= 0

)
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polynomial nonnegativity

first, consider the case of one inequality; given f ∈ R[x1, . . . , xn]

does there exist x ∈ Rn such that f(x) < 0

I if not, then f is globally non-negative

f(x) ≥ 0 for all x ∈ Rn

and f is called positive semidefinite or PSD

I the problem is NP-hard, but decidable

I many applications
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certificates

the problem

does there exist x ∈ Rn such that f(x) < 0

I answer yes is easy to verify; exhibit x such that f(x) < 0

I answer no is hard; we need a certificate or a witness
i.e, a proof that there is no feasible point
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Sum of Squares Decomposition

if there are polynomials g1, . . . , gs ∈ R[x1, . . . , xn] such that

f(x) =

s∑
i=1

g2i (x)

then f is nonnegative

an easily checkable certificate, called a sum-of-squares (SOS) decomposition

I how do we find the gi?

I when does such a certificate exist?
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example

we can write any polynomial as a quadratic function of monomials

f = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

=

x2xy
y2

T  4 2 −λ
2 −7 + 2λ −1
−λ −1 10

x2xy
y2


= zTQ(λ)z

which holds for all λ ∈ R

if for some λ we have Q(λ) � 0, then we can factorize Q(λ)
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example, continued

e.g., with λ = 6, we have

Q(λ) =

 4 2 −6
2 5 −1
−6 −1 10

 =

0 2
2 1
1 −3

[0 2 1
2 1 −3

]

so

f =

x2xy
y2

T 0 2
2 1
1 −3

[0 2 1
2 1 −3

]x2xy
y2



=

∥∥∥∥[ 2xy + y2

2x2 + xy − 3y2

]∥∥∥∥2

=
(
2x2y2 + y2

)2
+
(
2x2 + xy − 3y2

)2
which is an SOS decomposition



8

sum of squares and semidefinite programming

suppose f ∈ R[x1, . . . , xn], of degree 2d

let z be a vector of all monomials of degree less than or equal to d

f is SOS if and only if there exists Q such that

Q � 0

f = zTQz

I this is an SDP in standard primal form

I the number of components of z is
(
n+d
d

)
I comparing terms gives affine constraints on the elements of Q
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sum of squares and semidefinite programming

if Q is a feasible point of the SDP, then to construct the SOS representation

factorize Q = V V T , and write V =
[
v1 . . . vr

]
, so that

f = zTV V T z

= ‖V T z‖2

=

r∑
i=1

(vTi z)
2

I one can factorize using e.g., Cholesky or eigenvalue decomposition

I the number of squares r equals the rank of Q
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example

f = 2x4 + 2x3y − x2y2 + 5y4

=

x2xy
y2

T q11 q12 q13
q12 q22 q23
q13 q23 q33

x2xy
y2


= q11x

4 + 2q12x
3y + (q22 + 2q13)x2y2 + 2q23xy

3 + q33y
4

so f is SOS if and only if there exists Q satisfying the SDP

Q � 0 q11 = 2 2q12 = 2

2q12 + q22 = −1 2q23 = 0

q33 = 5
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convexity

the sets of PSD and SOS polynomials are a convex cones; i.e.,

f, g PSD =⇒ λf + µg is PSD for all λ, µ ≥ 0

let Pn,d be the set of PSD polynomials of degree ≤ d
let Σn,d be the set of SOS polynomials of degree ≤ d

I both Pn,d and Σn,d are convex cones in RN where N =
(
n+d
d

)
I we know Σn,d ⊂ Pn,d, and testing if f ∈ Pn,d is NP-hard

I but testing if f ∈ Σn,d is an SDP (but a large one)
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polynomials in one variable

if f ∈ R[x], then f is SOS if and only if f is PSD

example

all real roots must have even multiplicity, and highest coeff. is positive

f = x6 − 10x5 + 51x4 − 166x3 + 342x2 − 400x+ 200

= (x− 2)
2(
x− (2 + i)

)(
x− (2− i)

)(
x− (1 + 3i)

)(
x− (1− 3i)

)
now reorder complex conjugate roots

= (x− 2)
2(
x− (2 + i)

)(
x− (1 + 3i)

)(
x− (2− i)

)(
x− (1− 3i)

)
= (x− 2)

2(
(x2 − 3x− 1)− i(4x− 7)

)(
(x2 − 3x− 1) + i(4x− 7)

)
= (x− 2)

2(
(x2 − 3x− 1)2 + (4x− 7)2

)
so every PSD scalar polynomial is the sum of one or two squares
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quadratic polynomials

a quadratic polynomial in n variables is PSD if and only if it is SOS

because it is PSD if and only if

f = xTQx

where Q ≥ 0

and it is SOS if and only if

f =
∑
i

(vTi x)2

= xT
(∑

i

viv
T
i

)
x
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some background

In 1888, Hilbert showed that PSD=SOS if and only if

I d = 2, i.e., quadratic polynomials

I n = 1, i.e., univariate polynomials

I d = 4, n = 2, i.e., quartic polynomials in two variables

d
n
\ 2 4 6 8

1 yes yes yes yes
2 yes yes no no
3 yes no no no
4 yes no no no

I in general f is PSD does not imply f is SOS
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some background

I Connections with Hilbert’s 17th problem, solved by Artin: every PSD poly-
nomial is a SOS of rational functions.

I If f is not SOS, then can try with gf , for some g.

I For fixed f , can optimize over g too

I Otherwise, can use a “universal” construction of Pólya-Reznick.

More about this later.
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The Motzkin Polynomial

A positive semidefinite polynomial, that
is not a sum of squares.

M(x, y) = x2y4 + x4y2 + 1− 3x2y2

I Nonnegativity follows from the arithmetic-geometric inequality
applied to (x2y4, x4y2, 1)

I Introduce a nonnegative factor x2 + y2 + 1

I Solving the SDPs we obtain the decomposition:

(x2 + y2 + 1)M(x, y) = (x2y − y)2 + (xy2 − x)2 + (x2y2 − 1)2+

+
1

4
(xy3 − x3y)2 +

3

4
(xy3 + x3y − 2xy)2
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The Univariate Case:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ a2dx
2d

=


1
x
...
xd


T 

q00 q01 . . . q0d
q01 q11 . . . q1d

...
...

. . .
...

q0d q1d . . . qdd




1
x
...
xd


=

d∑
i=0

( ∑
j+k=i

qjk

)
xi

I In the univariate case, the SOS condition is exactly equivalent to nonnega-
tivity.

I The matrices Ai in the SDP have a Hankel structure. This can be exploited
for efficient computation.
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About SOS/SDP

I The resulting SDP problem is polynomially sized (in n, for fixed d).

I By properly choosing the monomials, we can exploit structure (sparsity,
symmetries, ideal structure).

I An important feature: the problem is still a SDP if the coefficients of F are
variable, and the dependence is affine.

I Can optimize over SOS polynomials in affinely described families.

For instance, if we have p(x) = p0(x) + αp1(x) + βp2(x), we can “easily”
find values of α, β for which p(x) is SOS.

This fact will be crucial in everything that follows. . .
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Global Optimization

Consider the problem
min
x,y

f(x, y)

with

f(x, y) := 4x2 − 21

10
x4 +

1

3
x6 + xy − 4y2 + 4y4

I Not convex. Many local minima. NP-hard.

I Find the largest γ s.t. f(x, y)− γ is SOS

I Essentially due to Shor (1987).

I A semidefinite program (convex!).

I If exact, can recover optimal solution.

I Surprisingly effective.

Solving, the maximum γ is -1.0316. Exact value.
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Coefficient Space

Let fαβ(x) = x4 + (α+ 3β)x3 + 2βx2 − αx+ 1.

What is the set of values of (α, β) ∈ R2 for which fαβ is PSD? SOS?

To find a SOS decomposition:

fα,β(x) = 1− αx+ 2βx2 + (α+ 3β)x3 + x4

=

 1
x
x2

T  q11 q12 q13
q12 q22 q23
q13 q23 q33

 1
x
x2


= q11 + 2q12x+ (q22 + 2q13)x2 + 2q23x

3 + q33x
4

The matrix Q should be PSD and satisfy the affine constraints.
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Feasible Set

The feasible set is given by:(α, β)

∣∣∣∣∣∣ ∃λ s.t.

 1 − 1
2 α β − λ

− 1
2 α 2λ 1

2 (α+ 3β)
β − λ 1

2 (α+ 3β) 1

 � 0


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Feasible Set

What is the set of values of (α, β) ∈ R2 for which fαβ PSD? SOS?

Recall: in the univariate case PSD=SOS, so here the sets are the same.

I Convex and
semialgebraic.

I It is the projection of a
spectrahedron in R3.

I We can easily test mem-
bership, or even optimize
over it!
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Lyapunov Stability Analysis

To prove asymptotic stability of ẋ = f(x),

V (x) > 0 x 6= 0

V̇ (x) =
(
∂V
∂x

)T
f(x) < 0, x 6= 0

I For linear systems ẋ = Ax, quadratic Lyapunov functions V (x) = xTPx

P > 0, ATP + PA < 0.

I With an affine family of candidate polynomial V , V̇ is also affine.

I Instead of checking nonnegativity, use a SOS condition.

I Therefore, for polynomial vector fields and Lyapunov functions, we can
check the conditions using the theory described before.
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Lyapunov Example

A jet engine model (derived from Moore-Greitzer), with
controller:

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y

Try a generic 4th order polynomial Lyapunov function.

V (x, y) =
∑

0≤j+k≤4

cjkx
jyk

Find a V (x, y) that satisfies the conditions:

I V (x, y) is SOS.

I −V̇ (x, y) is SOS.

Both conditions are affine in the cjk. Can do this directly using SOS/SDP!
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Lyapunov Example

After solving the SDPs, we obtain a Lyapunov function.

V = 4.5819x2 − 1.5786xy + 1.7834y2 − 0.12739x3 + 2.5189x2y − 0.34069xy2

+0.61188y3+0.47537x4−0.052424x3y+0.44289x2y2+0.0000018868xy3+0.090723y4
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Lyapunov Example

Find a Lyapunov function for

ẋ = −x+ (1 + x) y

ẏ = −(1 + x)x.

we easily find a quartic polynomial

V (x, y) = 6x2 − 2xy + 8y2 − 2y3 + 3x4 + 6x2y2 + 3y4.

Both V (x, y) and (−V̇ (x, y)) are SOS:

V =


x
y

x2

xy

y2


T 

6 −1 0 0 0
−1 8 0 0 −1

0 0 3 0 0
0 0 0 6 0
0 −1 0 0 3




x
y

x2

xy

y2

 , −V̇ =


x
y

x2

xy


T 

10 1 −1 1
1 2 1 −2

−1 1 12 0
1 −2 0 6




x
y

x2

xy



The matrices are positive definite, so this proves asymptotic stability.


