EE464 Sum of Squares
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polynomial programming

so far

» polynomial equations over the complex field

objectives

» general quantified formulae
» with Boolean connectives

» polynomial equations, inequalities, and inequations over the reals

e.g., does there exist = such that for all y

(f(z,y) =0) A (g(z,y) =0) V (h(z,y) #0)
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polynomial nonnegativity

first, consider the case of one inequality; given f € R[zq, ..., x,]

does there exist © € R™ such that f(z) <0

» if not, then f is globally non-negative
f(z) >0 forall zeR"
and f is called positive semidefinite or PSD
» the problem is NP-hard, but decidable

» many applications
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certificates

the problem

does there exist © € R™ such that f(z) <0

> answer yes is easy to verify; exhibit  such that f(z) <0

» answer no is hard; we need a certificate or a witness
i.e, a proof that there is no feasible point
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Sum of Squares Decomposition

if there are polynomials ¢1,...,9s € R[xy,...,2,] such that

then f is nonnegative

an easily checkable certificate, called a sum-of-squares (SOS) decomposition

» how do we find the g;7

» when does such a certificate exist?
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example

we can write any polynomial as a quadratic function of monomials

f =4zt + 423y — 12%y? — 2293 + 1092

221" [ 4 2 =l [22
= |2y 2 =742\ 1| |2y

y? - -1 10 | |2
=2TQ(\)z

which holds for all A € R

if for some X\ we have Q(A) = 0, then we can factorize Q(\)
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example, continued

e.g., with A = 6, we have

4 2 -6 0 2
Q=12 5 —1|=]2 1{3 2
-6 -1 10 1 -3
)
[ 22 T 0 2 x?
0 2 1
f=lxy 2 1 [2 1 _3} Ty
yQ 1 -3 y2

2xy + y2 2

- ‘ {2x2 +zy — 31/2}

= (22°y* + y2)2 + (227 + 2y — 3y2)2

which is an SOS decomposition
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sum of squares and semidefinite programming

suppose f € Rlx1,...,xz,], of degree 2d

let z be a vector of all monomials of degree less than or equal to d

fis SOS if and only if there exists @) such that

Q=0
f=2TQz

» this is an SDP in standard primal form

n+d)

» the number of components of z is ( a7

» comparing terms gives affine constraints on the elements of @
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sum of squares and semidefinite programming

if @ is a feasible point of the SDP, then to construct the SOS representation

factorize Q = VV', and write V = [v1 ... v;], so that
f=2Tvvtz
= [V7Tz|

= >0l

» one can factorize using e.g., Cholesky or eigenvalue decomposition

» the number of squares r equals the rank of @
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example

f=2z* 4223y — 22y + 5yt
T
z? q11 q12 q13 z?

= |2y qi2 Q422 G23 ry
y2 q13 423 (¢33 y2

= quz? + 2122y + (q22 + 2q13)2°Y* + 2q237Y° + g33y*

so f is SOS if and only if there exists @ satisfying the SDP

Q=0 qi1 =2 2q12 = 2
2q12 + q22 = —1 2¢o3 =0
33 =95
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convexity

the sets of PSD and SOS polynomials are a convex cones; i.e.,

f,9 PSD == Af + pgis PSD for all A, u >0

let P, 4 be the set of PSD polynomials of degree < d
let ¥,, 4 be the set of SOS polynomials of degree < d

n+d)

» both P, 4 and X, 4 are convex cones in RN where N = ( a

» we know X, ; C P, 4, and testing if f € P, 4 is NP-hard

» but testing if f € 3, 4 is an SDP (but a large one)
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polynomials in one variable

if f € Rz], then f is SOS if and only if f is PSD

example

all real roots must have even multiplicity, and highest coeff. is positive
f=2a5%—-102" + 512 — 16623 + 3422% — 400 + 200

= (@~ 2z~ 2+ i) (z— 2~ )z~ (1+30)(z — (1 - 30))
now reorder complex conjugate roots
= (@~ 2% — @+ )z~ (1+30) (z — 2~ 1))(z— (1 - 30))

= (z—-2)*((2® =3z — 1) —i(4z — 7)) ((z* — 3z — 1) +i(4x — 7))
= (z—2)*((2* = 3z — 1)® + (42 — 7)?)

so every PSD scalar polynomial is the sum of one or two squares
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quadratic polynomials

a quadratic polynomial in n variables is PSD if and only if it is SOS

because it is PSD if and only if
f=2"Qu
where @ > 0

and it is SOS if and only if
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some background

In 1888, Hilbert showed that PSD=SOS if and only if

» d =2, i.e., quadratic polynomials
» n =1, i.e., univariate polynomials

» d=4,n=2, i.e., quartic polynomials in two variables

» in general f is PSD does not imply f is SOS
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some background

» Connections with Hilbert's 17th problem, solved by Artin: every PSD poly-
nomial is a SOS of rational functions.

» If fis not SOS, then can try with gf, for some g.

» For fixed f, can optimize over g too

» Otherwise, can use a “universal” construction of Pélya-Reznick.

More about this later.
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The Motzkin Polynomial e

A positive semidefinite polynomial, that
is not a sum of squares.

S e
SR
S5 h:'::::‘o'l;':}'l"l/ 7

M(z,y) = 22y* + 2%y +1 — 32%y?

RS

% X
S, S
RS et

RS Wl
st
‘Q\‘\‘\“““‘“‘““”“{“o"" i 4

v

» Nonnegativity follows from the arithmetic-geometric inequalityl
applied to (z2y*, 2%y?,1)

» Introduce a nonnegative factor z2 + y? + 1

» Solving the SDPs we obtain the decomposition:

(®+ 9>+ 1) M(z,y) = (z%y — y)* + (zy® —2)* + (2%y° — 1)°+

1 3
+ @y —ay)® + ey’ + %y — 22y)?
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The Univariate Case:

flx) = ap + a1z + asx® + azz® + - - + asgr>®

T
1 oo Qo1 --- Qod 1
T qo1 q11 --- Qid x
z? qod 4qid --- ddd z?

d
= (X )
i=0 Njtk=i

» In the univariate case, the SOS condition is exactly equivalent to nonnega-
tivity.

» The matrices A; in the SDP have a Hankel structure. This can be exploited
for efficient computation.
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About SOS/SDP

» The resulting SDP problem is polynomially sized (in n, for fixed d).

» By properly choosing the monomials, we can exploit structure (sparsity,
symmetries, ideal structure).

» An important feature: the problem is still a SDP if the coefficients of F' are
variable, and the dependence is affine.

» Can optimize over SOS polynomials in affinely described families.

For instance, if we have p(z) = po(z) + ap1(z) + Bp2(z), we can “easily”
find values of a, 8 for which p(z) is SOS.

This fact will be crucial in everything that follows. . .
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Global Optimization

Consider the problem
min f(x,y)
T,y

with o1 1
f(z,y) == 42® — 1—O:U4 + ng +zy — 4y + 4yt

» Not convex. Many local minima. NP-hard.

» Find the largest v s.t. f(x,y) — v is SOS

Essentially due to Shor (1987).

v

i
‘,I Ilhl'il”I T

» A semidefinite program (convex!). ’ﬂll |
. . iy ”W‘"III
» If exact, can recover optimal solution. ( ”Il,l/,m,'[l/

» Surprisingly effective.

Solving, the maximum = is -1.0316. Exact value.
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Coefficient Space

Let fop(z) = 2* + (o + 3B)2® + 282% — ax + 1.
What is the set of values of (a, ) € R? for which f,5 is PSD? SOS?

To find a SOS decomposition:

fap(®) = 1—ax+282% + (a+33)2° + 2*
T

1 qi1 q12 13 1

= x q12 Q422 ¢23 x

z? q13 Q423 433 z?

= qu1 + 2q12% + (o2 + 2q13) 22 + 2q932° + g332”

The matrix @ should be PSD and satisfy the affine constraints.
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Feasible Set

The feasible set is given by:

18

.
ol

M
,,%a%%
I 4
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Feasible Set

What is the set of values of (a, 3) € R? for which f,3 PSD? SOS?

Recall: in the univariate case PSD=SQ0S, so here the sets are the same.

» Convex and
semialgebraic.

» It is the projection of a
spectrahedron in R3.

» We can easily test mem-
bership, or even optimize
over it!
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Lyapunov Stability Analysis

To prove asymptotic stability of & = f(z),

V() > 0 z#0
V)= (%) fz) < 0, z#0

» For linear systems & = Ax, quadratic Lyapunov functions V (z) = 27 Pz

P >0, ATP 4+ PA<O.

» With an affine family of candidate polynomial V, V is also affine.
» Instead of checking nonnegativity, use a SOS condition.

» Therefore, for polynomial vector fields and Lyapunov functions, we can
check the conditions using the theory described before.
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Lyapunov Example

A jet engine model (derived from Moore-Greitzer), with
controller:

3 1
T = —y—§x2—§x3
y = 3r—y

Try a generic 4th order polynomial Lyapunov function.

Vie,y)= Y. craly*

0<j+k<4

Find a V(x,y) that satisfies the conditions:

» V(x,y) is SOS.

» —V(x,y) is SOS.

Both conditions are affine in the ¢;x. Can do this directly using SOS/SDP!
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Lyapunov Example

After solving the SDPs, we obtain a Lyapunov function.

i P - ,

L Ve / N

3k 4 s 7T N N

oL ya / /7 = \ \l

7 \
v = Ss=n
7 .

> of / / / L‘-/\ \ A\ |

A F / / s \ \ \ 4

2 b | / ( ‘ B

N \ \ ~ \ ]

| ‘ _Z ) |

| A A ! ] |
L N ‘ - = ‘ ‘ ‘
5 4 3 2 1 0 1 2 3 4 5

V = 45819z — 1.5786zy + 1.7834y> — 0.12739z> + 2.51892°y — 0.34069zy>
+0.61188y>+0.47537x* —0.0524242y+0.44289>y>+0.0000018868zy> +0.090723y*
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Lyapunov Example

Find a Lyapunov function for

t=—-ao+1+2)y
y=—(142z)z.

we easily find a quartic polynomial

V(z,y) =62 — 2oy + 8y* — 2y° + 32" + 627y + 3y

Both V(z,y) and (=V (x,y)) are SOS:

T

® 6 -1 0 0 0 ® z 1T 10 1 1 1 x

Y -1 8 0 0 -1 Y . y 1 2 1 -2 y

V= 22 0 0o 3 o0 0 22 |, —v= % . T o Y%
zy 0 0o 0 6 0 zy T m

y2 0 -1 0 o0 3 42 et o2 0 6 =y

The matrices are positive definite, so this proves asymptotic stability.



