EE464 Sum of Squares

polynomial programming

so far

- polynomial equations over the complex field
objectives
- general quantified formulae
- with Boolean connectives
- polynomial equations, inequalities, and inequations over the reals
e.g., does there exist x such that for all y

$$
(f(x, y) \geq 0) \wedge(g(x, y)=0) \vee(h(x, y) \neq 0)
$$

polynomial nonnegativity

first, consider the case of one inequality; given $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

```
does there exist }x\in\mp@subsup{\mathbb{R}}{}{n}\mathrm{ such that }f(x)<
```

- if not, then f is globally non-negative

$$
f(x) \geq 0 \quad \text { for all } x \in \mathbb{R}^{n}
$$

and f is called positive semidefinite or PSD

- the problem is $N P$-hard, but decidable
- many applications

certificates

the problem

$$
\text { does there exist } x \in \mathbb{R}^{n} \text { such that } f(x)<0
$$

- answer yes is easy to verify; exhibit x such that $f(x)<0$
- answer no is hard; we need a certificate or a witness i.e, a proof that there is no feasible point

Sum of Squares Decomposition

if there are polynomials $g_{1}, \ldots, g_{s} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
f(x)=\sum_{i=1}^{s} g_{i}^{2}(x)
$$

then f is nonnegative
an easily checkable certificate, called a sum-of-squares (SOS) decomposition

- how do we find the g_{i} ?
- when does such a certificate exist?

example

we can write any polynomial as a quadratic function of monomials

$$
\begin{aligned}
f & =4 x^{4}+4 x^{3} y-7 x^{2} y^{2}-2 x y^{3}+10 y^{4} \\
& =\left[\begin{array}{c}
x^{2} \\
x y \\
y^{2}
\end{array}\right]^{T}\left[\begin{array}{ccc}
4 & 2 & -\lambda \\
2 & -7+2 \lambda & -1 \\
-\lambda & -1 & 10
\end{array}\right]\left[\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right] \\
& =z^{T} Q(\lambda) z
\end{aligned}
$$

which holds for all $\lambda \in \mathbb{R}$
if for some λ we have $Q(\lambda) \succeq 0$, then we can factorize $Q(\lambda)$
example, continued
e.g., with $\lambda=6$, we have

$$
Q(\lambda)=\left[\begin{array}{rrr}
4 & 2 & -6 \\
2 & 5 & -1 \\
-6 & -1 & 10
\end{array}\right]=\left[\begin{array}{rr}
0 & 2 \\
2 & 1 \\
1 & -3
\end{array}\right]\left[\begin{array}{rrr}
0 & 2 & 1 \\
2 & 1 & -3
\end{array}\right]
$$

SO

$$
\begin{aligned}
f & =\left[\begin{array}{c}
x^{2} \\
x y \\
y^{2}
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & 2 \\
2 & 1 \\
1 & -3
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 & 1 \\
2 & 1 & -3
\end{array}\right]\left[\begin{array}{c}
x^{2} \\
x y \\
y^{2}
\end{array}\right] \\
& =\left\|\left[\begin{array}{c}
2 x y+y^{2} \\
2 x^{2}+x y-3 y^{2}
\end{array}\right]\right\|^{2} \\
& =\left(2 x^{2} y^{2}+y^{2}\right)^{2}+\left(2 x^{2}+x y-3 y^{2}\right)^{2}
\end{aligned}
$$

which is an SOS decomposition
sum of squares and semidefinite programming
suppose $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, of degree $2 d$
let z be a vector of all monomials of degree less than or equal to d
f is SOS if and only if there exists Q such that

$$
\begin{aligned}
Q & \succeq 0 \\
f & =z^{T} Q z
\end{aligned}
$$

- this is an SDP in standard primal form
- the number of components of z is $\binom{n+d}{d}$
- comparing terms gives affine constraints on the elements of Q

sum of squares and semidefinite programming

if Q is a feasible point of the SDP, then to construct the SOS representation factorize $Q=V V^{T}$, and write $V=\left[\begin{array}{ll}v_{1} & \ldots v_{r}\end{array}\right]$, so that

$$
\begin{aligned}
f & =z^{T} V V^{T} z \\
& =\left\|V^{T} z\right\|^{2} \\
& =\sum_{i=1}^{r}\left(v_{i}^{T} z\right)^{2}
\end{aligned}
$$

- one can factorize using e.g., Cholesky or eigenvalue decomposition
- the number of squares r equals the rank of Q

example

$$
\begin{aligned}
f & =2 x^{4}+2 x^{3} y-x^{2} y^{2}+5 y^{4} \\
& =\left[\begin{array}{c}
x^{2} \\
x y \\
y^{2}
\end{array}\right]^{T}\left[\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{12} & q_{22} & q_{23} \\
q_{13} & q_{23} & q_{33}
\end{array}\right]\left[\begin{array}{c}
x^{2} \\
x y \\
y^{2}
\end{array}\right] \\
& =q_{11} x^{4}+2 q_{12} x^{3} y+\left(q_{22}+2 q_{13}\right) x^{2} y^{2}+2 q_{23} x y^{3}+q_{33} y^{4}
\end{aligned}
$$

so f is SOS if and only if there exists Q satisfying the SDP

$$
\begin{aligned}
& Q \succeq 0 \\
& q_{11}=2 \\
& 2 q_{12}=2 \\
& 2 q_{12}+q_{22}=-1 \quad 2 q_{23}=0 \\
& q_{33}=5
\end{aligned}
$$

convexity

the sets of PSD and SOS polynomials are a convex cones; i.e.,

$$
f, g \text { PSD } \quad \Longrightarrow \quad \lambda f+\mu g \text { is PSD for all } \lambda, \mu \geq 0
$$

let $P_{n, d}$ be the set of PSD polynomials of degree $\leq d$ let $\Sigma_{n, d}$ be the set of SOS polynomials of degree $\leq d$

- both $P_{n, d}$ and $\Sigma_{n, d}$ are convex cones in \mathbb{R}^{N} where $N=\binom{n+d}{d}$
- we know $\Sigma_{n, d} \subset P_{n, d}$, and testing if $f \in P_{n, d}$ is NP-hard
- but testing if $f \in \Sigma_{n, d}$ is an SDP (but a large one)
polynomials in one variable
if $f \in \mathbb{R}[x]$, then f is SOS if and only if f is PSD

example

all real roots must have even multiplicity, and highest coeff. is positive

$$
\begin{aligned}
f & =x^{6}-10 x^{5}+51 x^{4}-166 x^{3}+342 x^{2}-400 x+200 \\
& =(x-2)^{2}(x-(2+i))(x-(2-i))(x-(1+3 i))(x-(1-3 i))
\end{aligned}
$$

now reorder complex conjugate roots

$$
\begin{aligned}
& =(x-2)^{2}(x-(2+i))(x-(1+3 i))(x-(2-i))(x-(1-3 i)) \\
& =(x-2)^{2}\left(\left(x^{2}-3 x-1\right)-i(4 x-7)\right)\left(\left(x^{2}-3 x-1\right)+i(4 x-7)\right) \\
& =(x-2)^{2}\left(\left(x^{2}-3 x-1\right)^{2}+(4 x-7)^{2}\right)
\end{aligned}
$$

so every PSD scalar polynomial is the sum of one or two squares

quadratic polynomials

a quadratic polynomial in n variables is PSD if and only if it is SOS
because it is PSD if and only if

$$
f=x^{T} Q x
$$

where $Q \geq 0$
and it is SOS if and only if

$$
\begin{aligned}
f & =\sum_{i}\left(v_{i}^{T} x\right)^{2} \\
& =x^{T}\left(\sum_{i} v_{i} v_{i}^{T}\right) x
\end{aligned}
$$

some background

In 1888, Hilbert showed that PSD=SOS if and only if

- $d=2$, i.e., quadratic polynomials
- $n=1$, i.e., univariate polynomials
- $d=4, n=2$, i.e., quartic polynomials in two variables

${ }_{n} \backslash$	2	4	6	8
1	yes	yes	yes	yes
2	yes	yes	no	no
3	yes	no	no	no
4	yes	no	no	no

- in general f is PSD does not imply f is SOS

some background

- Connections with Hilbert's 17th problem, solved by Artin: every PSD polynomial is a SOS of rational functions.
- If f is not SOS, then can try with $g f$, for some g.
- For fixed f, can optimize over g too
- Otherwise, can use a "universal" construction of Pólya-Reznick.

More about this later.

The Motzkin Polynomial

- Nonnegativity follows from the arithmetic-geometric inequality applied to $\left(x^{2} y^{4}, x^{4} y^{2}, 1\right)$
- Introduce a nonnegative factor $x^{2}+y^{2}+1$
- Solving the SDPs we obtain the decomposition:

$$
\begin{aligned}
\left(x^{2}+y^{2}+1\right) M(x, y)=(& \left.x^{2} y-y\right)^{2}+\left(x y^{2}-x\right)^{2}+\left(x^{2} y^{2}-1\right)^{2}+ \\
& +\frac{1}{4}\left(x y^{3}-x^{3} y\right)^{2}+\frac{3}{4}\left(x y^{3}+x^{3} y-2 x y\right)^{2}
\end{aligned}
$$

The Univariate Case:

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{2 d} x^{2 d} \\
& =\left[\begin{array}{c}
1 \\
x \\
\vdots \\
x^{d}
\end{array}\right]^{T}\left[\begin{array}{cccc}
q_{00} & q_{01} & \cdots & q_{0 d} \\
q_{01} & q_{11} & \cdots & q_{1 d} \\
\vdots & \vdots & \ddots & \vdots \\
q_{0 d} & q_{1 d} & \cdots & q_{d d}
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
\vdots \\
x^{d}
\end{array}\right] \\
& =\sum_{i=0}^{d}\left(\sum_{j+k=i} q_{j k}\right) x^{i}
\end{aligned}
$$

- In the univariate case, the SOS condition is exactly equivalent to nonnegativity.
- The matrices A_{i} in the SDP have a Hankel structure. This can be exploited for efficient computation.

About SOS/SDP

- The resulting SDP problem is polynomially sized (in n, for fixed d).
- By properly choosing the monomials, we can exploit structure (sparsity, symmetries, ideal structure).
- An important feature: the problem is still a SDP if the coefficients of F are variable, and the dependence is affine.
- Can optimize over SOS polynomials in affinely described families.

For instance, if we have $p(x)=p_{0}(x)+\alpha p_{1}(x)+\beta p_{2}(x)$, we can "easily" find values of α, β for which $p(x)$ is SOS.

This fact will be crucial in everything that follows...

Global Optimization

Consider the problem

$$
\min _{x, y} f(x, y)
$$

with

$$
f(x, y):=4 x^{2}-\frac{21}{10} x^{4}+\frac{1}{3} x^{6}+x y-4 y^{2}+4 y^{4}
$$

- Not convex. Many local minima. NP-hard.
- Find the largest γ s.t. $f(x, y)-\gamma$ is SOS
- Essentially due to Shor (1987).
- A semidefinite program (convex!).
- If exact, can recover optimal solution.
- Surprisingly effective.

Solving, the maximum γ is -1.0316 . Exact value.

Coefficient Space

Let $f_{\alpha \beta}(x)=x^{4}+(\alpha+3 \beta) x^{3}+2 \beta x^{2}-\alpha x+1$.
What is the set of values of $(\alpha, \beta) \in \mathbb{R}^{2}$ for which $f_{\alpha \beta}$ is PSD? SOS?

To find a SOS decomposition:

$$
\begin{aligned}
f_{\alpha, \beta}(x) & =1-\alpha x+2 \beta x^{2}+(\alpha+3 \beta) x^{3}+x^{4} \\
& =\left[\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right]^{T}\left[\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{12} & q_{22} & q_{23} \\
q_{13} & q_{23} & q_{33}
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right] \\
& =q_{11}+2 q_{12} x+\left(q_{22}+2 q_{13}\right) x^{2}+2 q_{23} x^{3}+q_{33} x^{4}
\end{aligned}
$$

The matrix Q should be PSD and satisfy the affine constraints.

Feasible Set

The feasible set is given by:

$$
\left\{(\alpha, \beta) \mid \exists \lambda \text { s.t. }\left[\begin{array}{ccc}
1 & -\frac{1}{2} \alpha & \beta-\lambda \\
-\frac{1}{2} \alpha & 2 \lambda & \frac{1}{2}(\alpha+3 \beta) \\
\beta-\lambda & \frac{1}{2}(\alpha+3 \beta) & 1
\end{array}\right] \succeq 0\right\}
$$

Feasible Set

What is the set of values of $(\alpha, \beta) \in \mathbb{R}^{2}$ for which $f_{\alpha \beta}$ PSD? SOS?
Recall: in the univariate case $\mathrm{PSD}=\mathrm{SOS}$, so here the sets are the same.

- Convex and semialgebraic.
- It is the projection of a spectrahedron in \mathbb{R}^{3}.
- We can easily test membership, or even optimize over it!

Lyapunov Stability Analysis

To prove asymptotic stability of $\dot{x}=f(x)$,

$$
\begin{aligned}
V(x) & >0 \quad x \neq 0 \\
\dot{V}(x)=\left(\frac{\partial V}{\partial x}\right)^{T} f(x) & <0, \quad x \neq 0
\end{aligned}
$$

- For linear systems $\dot{x}=A x$, quadratic Lyapunov functions $V(x)=x^{T} P x$

$$
P>0, \quad A^{T} P+P A<0 .
$$

- With an affine family of candidate polynomial V, \dot{V} is also affine.
- Instead of checking nonnegativity, use a SOS condition.
- Therefore, for polynomial vector fields and Lyapunov functions, we can check the conditions using the theory described before.

Lyapunov Example

A jet engine model (derived from Moore-Greitzer), with controller:

$$
\begin{aligned}
\dot{x} & =-y-\frac{3}{2} x^{2}-\frac{1}{2} x^{3} \\
\dot{y} & =3 x-y
\end{aligned}
$$

Try a generic 4th order polynomial Lyapunov function.

$$
V(x, y)=\sum_{0 \leq j+k \leq 4} c_{j k} x^{j} y^{k}
$$

Find a $V(x, y)$ that satisfies the conditions:

- $V(x, y)$ is SOS.
- $-\dot{V}(x, y)$ is SOS.

Both conditions are affine in the $c_{j k}$. Can do this directly using SOS/SDP!

Lyapunov Example

After solving the SDPs, we obtain a Lyapunov function.

$V=4.5819 x^{2}-1.5786 x y+1.7834 y^{2}-0.12739 x^{3}+2.5189 x^{2} y-0.34069 x y^{2}$
$+0.61188 y^{3}+0.47537 x^{4}-0.052424 x^{3} y+0.44289 x^{2} y^{2}+0.0000018868 x y^{3}+0.090723 y^{4}$

Lyapunov Example

Find a Lyapunov function for

$$
\begin{aligned}
\dot{x} & =-x+(1+x) y \\
\dot{y} & =-(1+x) x
\end{aligned}
$$

we easily find a quartic polynomial

$$
V(x, y)=6 x^{2}-2 x y+8 y^{2}-2 y^{3}+3 x^{4}+6 x^{2} y^{2}+3 y^{4} .
$$

Both $V(x, y)$ and $(-\dot{V}(x, y))$ are SOS:
$V=\left[\begin{array}{c}x \\ y \\ x^{2} \\ x y \\ y^{2}\end{array}\right]^{T}\left[\begin{array}{rrrrr}6 & -1 & 0 & 0 & 0 \\ -1 & 8 & 0 & 0 & -1 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 \\ 0 & -1 & 0 & 0 & 3\end{array}\right]\left[\begin{array}{c}x \\ y \\ x^{2} \\ x y \\ y^{2}\end{array}\right], \quad-\dot{V}=\left[\begin{array}{c}x \\ y \\ x^{2} \\ x y\end{array}\right]^{T}\left[\begin{array}{rrrr}10 & 1 & -1 & 1 \\ 1 & 2 & 1 & -2 \\ -1 & 1 & 12 & 0 \\ 1 & -2 & 0 & 6\end{array}\right]\left[\begin{array}{c}x \\ y \\ x^{2} \\ x y\end{array}\right]$
The matrices are positive definite, so this proves asymptotic stability.

