Lecture Notes

  1. References (ps, pdf)
  2. Mathematical Preliminaries (ps, pdf)
  3. Singular Values and LMIs (ps, pdf)
  4. State-space systems (ps, pdf)
  5. Linear analysis (ps, pdf)
  6. Linear analysis and systems (ps, pdf)
  7. System models and model reduction (ps, pdf)
  8. The projection theorem (ps, pdf)
  9. Controllability and observability (ps, pdf)
  10. Hankel operators and model reduction (ps, pdf)
  11. Balanced truncation and model reduction (ps, pdf)
  12. LFTs and stability (ps, pdf)
  13. Internal stability and coprime factorization (ps, pdf)
  14. Youla Parametrization (ps, pdf)
  15. State-space computations (ps, pdf)
  16. H-infinity synthesis (ps, pdf)
  17. LFTs and robustness (ps, pdf)
  18. The structured singular value (ps, pdf)
  19. Summary and conclusions (ps, pdf)

Homework

10
Read chapter 8 of DP. Solve problems 8.3 and 8.6
9
Read chapter 7 of DP. Solve problems 7.2, 7.3, 7.9, 8.1, 8.2
8
Read chapters 5 and 7 of DP. Solve problems 5.1, 5.4, and 5.6.
7
Read chapters 5 and 7 of DP. Solve problems 5.3 and 5.5.
6
Read chapter 5 of DP. Solve problems 4.2, 4.6, 4.7, 4.11.
5
Solve problems 4.3, 4.5, 4.9, 4.10.
4
Solve problems 3.6, 3.11, 3.14, 3.15.
3
Read chapter 4 of DP. Solve problems 3.1, 3.2, 3.5, 3.7, 3.9, 3.10.
2
Read chapters 2 and 3 of DP. Solve problems 1.14, 1.17, 1.19, 1.21, 1.22, 2.7, 2.18, 2.20
1
Read chapters 0 and 1 of DP. Solve problems 1.1, 1.3, 1.4, 1.9, 1.15, 1.18.

References

  • The required textbook for the course is A Course in Robust Control Theory: a convex approach by G. E. Dullerud and F. Paganini.