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A New Approach for Analysis and
Synthesis of Time-Varying Systems

Geir E. Dullerud,Member, IEEE and Sanjay LallMember, IEEE

Abstract—In this paper new techniques are developed for  We apply these techniques to the, analysis and synthesis
the analysis of linear time-varying (LTV) systems. These lead problem for LTV systems. In the spirit of recent results on LTI
to a formally simple treatment of robust control problems for systems using linear matrix inequalities (LMI's) [9], [16], we

LTV systems, allowing methods more usually restricted to time- . ; . -
invariant systems to be employed in the time-varying case. As derive a solution for the LTV case expressed in termiinefar

an illustration of this methodology, the so-calledH.. synthesis Operatorinequalities. The derivation is formally identical to
problem is solved for LTV systems. that used in the LTI case. The method also gives some insight

Index Terms—LMI, periodic systems, robust control, time into the naturg of the relati_onship be_tween the_Riccati equation
variation. and LMI solutions and their connection to particular structured
singular value problems. The papers [3] and [11] consider
similar synthesis problems using a closely related approach;
a key distinction of the current paper is its generality and

N THIS paper, new techniques are developed for tlmnnections with standard robust control techniques and the

analysis of linear time-varying (LTV) systems. These leatbmpact derivation of the results and machinery.
to a formally simple treatment of problems for LTV systems, The techniques presented here also render simple the solu
allowing methods usually restricted to time-invariant systenti®n of the H, synthesis problem for periodically time-varying
to be employed in the time-varying case. Analysis and synthdiscrete systems. The periodicity of the system leads naturally
sis techniques for LTV systems can be applied to control &t a solution expressed in terms of finite-dimensional linear
nonlinear systems along trajectories and for design of multirateatrix inequalities, solvable by standard means.
filters in signal processing.

We make use of the fact that the usual state-space descrip-
tion of an LTV system

I. INTRODUCTION

Il. PRELIMINARIES

We now introduce our notation and gather some elementary
Trp1 = Az + Bruk facts. The .real and complex numbers are geqoted@ and
C, respectively. The open and closed unit discs(ofare
represented by andD, and T is the unit circle.

Given a Hilbert spacé” we denote its horm by - || , and
its inner product by(-,-}g; for convenience we frequently
ué)press the subscript. Given two Hilbert spaeand F we
enote the space of bounded linear operators mappitay 7'
8{/ L(E, F) and shorten this t&€(E) whenE equalsF. If X
is in L(E, F) we denote theX to F' induced norm ofX by
JbXHE_)F. The adjoint ofX is written asX*. WhenX is in

(SE) we denote its spectrum pec(X) which is defined by

Yk = Cpap + Dyug

described by time-varying matriced;, B, Ckx, and Dy,
is equivalent to a description in terms diock-diagonal
operators. This leads to an operator-based description of
system and a function which takes the role of a transf
function for time-varying systems.

We show that this function, called thgystem functign
has many properties analogous to those of transfer functi
of linear time-invariant (LTI) systems. In particular, for LTI
systems, the induced norm is the maximum of a matrix normspec(X) = {A € C: IA — X is not invertible inL(E)}.
over frequency, and in the time-varying case a very similgihe spectral radius ok will be denoted byrad(X).
result is true. This allows us to apply techniques which havewhen an operatoX e L(E) is self-adjoint we useY < 0
formerly been restricted to LTI systems to LTV systems. Itb mean it is negative definite; that is there exists a number
doing this, many of the proofs becorf@mally identical, and « > 0, such that for all nonzere € E the inequality
this leads to extremely simple derivations. In particular, and

: . : X — 2
most importantly, this makes the machinery and results of (o, Xz) < —allz]
robust control available for LTV systems. holds. We now state an elementary fact used in the sequel.

Proposition 1: SupposeX andY are self-adjoint operators
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This is the well-known Schur complement formula and wiltolumns permuted appropriately so that
be referred to as such; it can be found in any introductory text F G F. G
on matrix or operator theory. HR Sﬂ = |:Rk S, }

In the sequel we will require the weak operator topolo
a a P P gI¥|ence there exist permutation operators, which we shall denote

of L(F,E). A sequenceY; in L(F,E) converges weakly by (A d PAA h that P A) AP (A 7
to Y € L(F,E), denotedlimy_.. Yr "= Y, if for every y Pi(A) and Pr(A), such thatP(A)AP:(A) = [[4]] or

y € F.z € E the following limit holds: equivalently
. P F G F G p F G I viae
dim (2, Yiy) = (2, Yy). & S|)lr s]T\|r S|) TR S
See, for example, [10] for details. For any operatord whose elements are block-diagonal oper-
The main Hilbert space of interest in the paper is denot€rs

by ¢, (F) whereE is a Euclidean space. It consists of elements P(AP(A)* = P(A)P(A) =1
T = ($Oa$1,$2a .. .), with eaCh.’L'k € F, which SatiSfy P(A)P(A)* — P(A)*P(A) -7

o 2 and if A is self-adjoint, then,(A) = P,.(A)*. For a concrete

> llzxllE < oo | 4 o

P example, considefF" G]. Then
The inner product ofc, y in #>(E) is therefore defined by P(F G)=1I, P([F Q)= [ *E }
the infinite sum(z,y)e, = > 7eo{®x, yx) e If the spaceF is Z'EZ
clear from the context we abbreviate(L) to /5. where

One of the most important operators used in the paper is
the unilateral shift operatoZ, defined oné,;(E) as follows.
For a = (ag, a1,asz,---) in £2(E) we defineZa by E=

S O =
o O O
o = O
[enlan}

(Za) = (07 ap, a1, az, - - )

We now introduce a more specialized notation for t

purposes of this paper h‘Iahe following is immediate.

Proposition 3: For any real numbe#, and any partitioned
operatorA consisting of elements which are block-diagonal,
A < g4I holds if and only if[A] < 8. That is, positivity is
A. Block-Diagonal Operators preserved under permutation.

Definition 2: A bounded operato mapping ¢2(X) to Two further useful facts for the above permutations are the
£,(Y) is block-diagonalf there exists a sequence of operatorfllowing.

Q. in £(X,Y) such that, for allw,z, if z = Quw then  Proposition 4:

2 = Qrwi. Then@Q has the representation 1) Suppose thatt and B are partitioned operators consist-
0 0 ing of block-diagonal elements and that their structures
0 o, are the same. Then
Q2 - [A+ B] = [A] + [B]-
0 2) Suppose thatt andC are partitioned operators, each of

which consists of elements which are block-diagonal.
Further suppose that the block structures are compati-
ble, so that the producdC is block-diagonal for any
operatorsA and C' with the same block structures as
A andC. Then

Further, if P, € £(X,Y) is a uniformly bounded sequence of
operators we say’ = diag(Fp, Py, --) is the block-diagonal
operator for P, and conversely giverP? a block-diagonal
operator, the blocks are denoted By, for £ > 0.

SupposeF, GG, R, and S are block-diagonal operators, and
let A be apartitioned operatoy each of whose elements is a [AC] = [A]IC]-

block-diagonal operator, such as Proof: Part 1) is obvious.

F G Part 2) is simple to see, sindé.(A), the right permutation
A= R S| of A, depends only on the column dimensions of the blocks in
A. Since A and C have compatible block structur&,(C) =

We now define the following notation: P.(A)*, and hence
Hg ¢ ﬂ - diag([go g} [j; G } - ) [AN[C] = Pu(A)AP,(A)P(C)CP,(C)
00 bt = B(A)ACP,(C)
which we call thediagonal realizationof A. Implicit in the = P(AC)ACP,(AC)

definition of [A4] is the underlying block structure of the _AC
partitioned operatord. Clearly, for any given operatad of = [4c]
this particular structure[A] is simply A with the rows and which is the required result. O
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Ill. LINEAR TIME-VARYING SYSTEMS of the system is given by the maximum norm of this transfer

We consider a fundamental class of LTV systems in discrdtgiction over the unit ball in the complex plane.

time. The standard way of describing such a systéia using W& Will show that, for lineartime-varying systems, very
state-space notation similar statements can be made. Indeed, the induced norm of

an LTV system can be analyzed by computing the maximum
Ty1 = Apzr + Brwy 1) horm of an operator-valued function over a complex ball.
21 = Crr + Diwi @) However, in this context we will use a bounded sequexce
C of complex numbers as our notion of frequency. Robust
for w € £y, where A, € R™™, By, € R"*", Cy € R™™™  control techniques to date have been primarily developed for
andD; € R"=*"+ are bounded matrices. The initial condition T| systems; the system function derived here provides an
of the system iszo = 0. important and direct link between LTI and LTV systems,
Our main objective is to develop an operator-based descrigaking the techniques of robust control available for LTV
tion of such systems. We show that many of the standaggstems. In particular, this allows the construction of convex
state-space methods used in the analysis of LTI systems cagger bounds for structured uncertainty problems for LTV
applied directly to time-varying systems using these metho@@stems_

As an example, we will solve th& ., synthesis problem for  Given such a sequence, we will make use of two associated

LTV systems. block-diagonal operators. These are
Using the previously defined notation, cleary., By, Ck, )
and Dy, in (1) define block-diagonal operators. Recalling that Aol 0
Z is the shift, we can rewrite (1) as A AL
- Aol
r=ZAx + ZBw
—Cr+D - 0 A (3)
z=Czx+ Dw. Aol 0
The question of whether this set of equations is well-defined, Q- Aol
that is whether or not there exists are /> such that they are AoAr Azl
satisfied, is one oftability of the system. If the equations are )
well-defined, then we can write
on /,. Observe that
G=C(I—-ZA*ZB+D 2)
QZ =AZQ 4)

and = = Gw. These equations are clearly well-defined if
1 & spec(ZA). The next result shows that this condition igvhich is easily verified. Also note that if each element of the
equivalent to the standard notion of stability of LTV systemsgquence); is on the unit circleT then @ is invertible in
that is exponential stability. L(¢3). Using the definition ofA we define thesystem function
Definition 5: The systenti is exponentially stablé, when of the operatorG' by
w = 0, there exist constants> 0 and0 < A < 1 such that, for
eachky > 0 and any initial condition:;, € R™, the inequality
lenllsn < Xl || holds for allk 2 ko. when the inverse is defined. We can now state the main result
Proposition 6: Supposed, is a bounded sequencedi{ X) of this section.
where X is a H|Ibert space. Then the' difference gquatlon Theorem 7: Supposel ¢ spec(ZA). Then
Tr+1 = Arxi iS exponentially stable if and only il ¢
spec(Z A). |C(I — ZA)™ ZB + D|| = sup ||G(A)]]
This is the well-known result that exponential stability is Ap CD
equivalent to/, stability of the systemey1 = Arzp + vi;
versions of this result can be found in any standard refere
on Lyapunov theory, for instance [19]. Thus the system
stable if and only ifl & spec(ZA); we will work with this
latter condition.
Throughout the sequel we will refer to the block-diagon
operatorsA, B, C, and D and the operator7 they define
without formal reference to their definitions in (1) and (2).

G(A) :=C(I —AZA)"*AZB+D

r]V\C/hereA depends on\; as in (3).
“Shis theorem says that the inducégdnorm of the system
&, which equals/|C(I — ZA)~1ZB + D||, is given by the
maximum of the normj|G(A)||, when the); are chosen in the
Linit disk. This result looks similar to the well-known result for
z%ransfer functions of time-invariant systems, and it is the key
element in allowing time-invariant techniques to be applied to
time-varying systems.

In particular, we will see that we can use this result to derive
a time-varying version of the Kalman-Yacubovitch—Popov

We now consider the properties of operators of the form @KYP) lemma, characterizing those systems which are contrac-
(2). Formally, this equation looks very much like the frequenayve. This allows the development of time-varying analogs of
domain description of a discrete-time time-invariant system.wtell-known results in structured singular value analysis or so-
is well known that for such systems, one can replace the shattlled ;;-analysis. However, first we must prove a preliminary
operatorZ with a complex number, and then the induced normesult.

IV. THE SYSTEM FUNCTION
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Lemma 8: Supposel ¢ spec(ZA). Then given any se- Without loss of generality we may assume thaandy have
quence), in T, the operatod — AZA is invertible and we finite support, which we denote by.
have Now it is routine to verify thatG(A) is lower triangular

A d has th tati
ICU = ZA)"ZB + D|| = |G(0)]. and has the representation

D 0
Proof: Fix a sequence\;, € T and define the operator A TO D
€ as in (3). Now notice that botk and2~! are isometries . A\ ;\ ;9 \ 1{ D
and therefore G(A) = 241420 2421 2 (5)

. 1 _ B 1 ) AzA2 A1 130
|C(I—ZA) ZB+D|| = ||{C(I - ZA) " ZB+ D} Y. :

To complete the proof consider the operator on the right-han .
P P P g w?mereTkl = CpAp—_1--- A1 8. Therefore, recalling thaw

side above 0 ;
andy have finite support, the inner product
QCI - zA) ' ZB+ DYt R
_ CQ(I—ZA)_IZQ_IB—FD <y7G(A)w>2 :p()‘lv"'v)‘n)
=CQ(I - AZA)'Q 'AZB+ D where p(-,---,-) is some multinomial. Multinomials satisfy
=C(I - AZA)_IAZB +D= G(A) a maximum principle (see for instance [17]); specificaily
satisfies
where we have used the fact tHatcommutes with4, B, C,
and D, and the relationship described by (4). O max |p(fi1, -, fin)| = max [p(pa, - -, fn)|-
This lemma states that it is possible to scale the system Hi €D el
matricesA and B by any complex sequence on the unit circlg, ;s there exist numbers,, - -, X, on the unit circleT so

without affecting the norm of the system. Note that this cgp 4
equivalently be thought of as scaling, the shift operator.
The next lemma describes the effect of the operatam the

Spectrum of Z A. B |p()‘/177)‘;1)| Z |p()‘177)‘n)| > - (6)
Lemma 9: Suppose thad; is a sequence if® and define

A as in (3). Let A’ be the operator, of form (3), that corresponds to the
1) If ju & spec(ZA), thenp & spec(AZA). sequencg 1, Ay, - ,)\/;L,l,~~~}. Observe :[hat/ by Lemma 8 we
2) If the sequencey, is further restricted to be i, then havellG(D[| = [[G(AY)]|. Also note thati(A’) has the same

spec(ZA) = spec(AZA). lower triangular form as7(A) in (5) and therefore
Proof: FII’S_t note that without loss of _generahty we may (y, G Yw)a = p(X,, - \L)
assume thag. = 1 in 1) and therefore will show that ¢
spec(ZA) implies thatl ¢ spec(AZA). Thus by (6) the inequality(y, G(A’)wl|s) > ~ holds.

.We begin proving 1) by invoking Proppsition 6 to see that, Now certainly ||G(A)|| = |(y, G(A)w)s| and hence
sincel ¢ .SpeC(ZA), the dlfferen_ce_ equatiofy41 = Arzy IS HG«(A/)H > ~; also recall thﬁﬂé(])” _ HG«(A/)H But this is
exponentially stable. Each,, satisfies|A\x| < 1 and so a contradiction since by definition = ||G(1)||. 0

In the sequel we primarily work with the system function
when A = AI, where A is a complex scalar. Observe by
is also exponentially stable. Again use Proposition 6 to codefining the notation
clude that1l ¢ spec(Z@Q) where @) is the block-diagonal .
operator corresponding t@; = Awy1Ag. It is routine to G(\):=C(I - AZA) "\ZB+D
verify that ZQQ = AZA. . o R .

Part 2) is immediate by applying (4) to see tREEAQ~! = this specialized functiois(\) looks and acts very much like
AZA. o the transfer function of an LTI system and therefore plays an

Note that in particular 1) and 2) imply, the (apparentlyﬂ‘Strumenta' role in our viewpoint in the next section.
well-known result, that the spectrum @fA is an entire disc
centered at zefpto see this, sefh = A and let)\ be inD.
We can now prove the main result of this section.

Proof of Theorem 7:For convenience definey := The previous section showed that the induced norm of
|G(I)|| which is equal td|G|| by definition. Suppose contraryan LTV system was given by the maximum of an operator
to the theorem that there exists a sequekgec D such that norm over a complex ball. In this section, our primary goal
|G(A)|| > ~. Then there exist elemenisy € ¢, satisfying is to show that this can be recast into a convex condition

Thpl = App1ArTh

V. EVALUATING THE /5-INDUCED NORM

llz2|| = |lyll2 = 1 and on the system matrices. We will see that the results derived
G(A appear very similar to those derived for time-invariant systems,
[y, G(A)w)z| > - and indeed the methodology parallels that for time-invariant

1Operators of the fornZ A are commonly known as weighted shifts. systems.
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To start we state the following technical lemma. Proof: We start by invoking Theorem 7 and Lemma 9
Lemma 10: The following conditions are equivalent. with A := AI: condition 1) above is equivalent to condition 1)
1) supycp||CI — \ZA)™*A\ZB + D|| < 1 and in Lemma 10. Therefore, it suffices to show that 2) above is
rad(ZA) < 1. equivalent to 2) in Lemma 10. Also, a solutidh € X" to (9)
2) There existsX € L(fy), which is self-adjoint and immediately satisfies 2) in Lemma 10 wiffi := X.
X > 0, such that It only remains to show that a solutioki to (7) implies that

there existsX € X satisfying (9), which we now demonstrate.
[ZA ZBT {X 0} [ZA ZB} [X 0} 0 SupposeX € L(#;) is self-adjoint and satisfies botki > 0
C D 0o I||C D 0 I and (9). Our goal is to construct € & from X and show
7) that it has the desired properties.
Define the operatof,, = [0 --- QI 0 ---]*, for k > 0,
— —

This is an operator version of a well-known matrix result. It I : k zeros
doesnot depend on the structure of, B, C, or D, or the mappingR™ — £, which then satisfies
presence of the operatdf. A proof of this result, which we EiA=[0 - 0 Ay 0 --1.
omit, can be found in [21].

For comparison, the corresponding standard result for LPpserve that; £, = 1. Using E,,, defineX to be the block-

systems can be stated as follows; given a sys@mvith  giagonal operato¥, — £, corresponding to the sequence
transfer functionG(z) := Co(I — zAg)~*2By + Do In @ defined by
minimal realization, theH., norm of G is less than one if

and only if there exists a matriX, > 0 such that Xy = E;XEy, for eachk > 0.
Ao Bol'[Xo 0140 Bo X0 O 0 Thus,X is a bIock—diagonaJ operator, whose elements are the
Co Do 0 I||Cy Dy 0 I blocks on the diagonal oK. Clearly, X is self-adjoint and

satisfiesX > 0 becauseX has these properties. This proves
Essentially this matrix result can be stated in many differedf ¢ X.
ways, e.g., in terms of the eigenvalues of a Hamiltonian matrix To complete the proof we must now demonstrate that
or in terms of the existence of solutions to a Riccati equatiaatisfies (9). Grouping in (9) with X we apply Proposition 3
[15]. However, one of the powerful features of the abovi® see that (9) holds if and only if the permuted inequality
formulation is that it isaffine in the variableX,. This leads .
to both powerful analytical results and simple computations. MA B} [Z*XZ 0} {A B} _ {X 0} ﬂ <0
In Lemma 10 the variableX has no particular structure ¢ D 0 I]|C D 0 I
except that it is self-adjoint and positive definite and i
therefore not directly useful in the current context. Our nex
: . . : 1S tantamount to
goal is therefore to improve upon this and obtain a formulation

in which the variable is block-diagonal. To this end define the HA Bﬂ ¥ HZ*XZ Oﬂ HA Bﬂ HX Oﬂ <0

olds. Now we can apply Proposition 4 to show that the above

set X’ to consist of positive definite self-adjoint operators C D 0 I C D 0 I
of the form (10)
Xo 0 . . L -
¥ We will now show that this inequality is satisfied.
X = ! X >0 (8)  Observe that, for each > 0, the following hold$:
2
0 EiC=0 --- 0 Cp, 0 --]

where the block structure is the same as that of the opesatorNow using the factst; £, = I, it is routine to verify the
With this definition we can state the main result of this sectiofimportant property

Theorem 11: The following conditions are equivalent.

1) ||O( — ZA)'ZB + D|| < 1 and1 ¢ spec(ZA). [é g} {Eok K } _ [Eok K } Hé gﬂ holds

2) There existsX € X such that k k k a1

ZA zZB1]'[X 0][ZzA ZB X 0
C D o Ille pl=lo 1|<9 ) foreachk > 0.
Since X by assumption satisfies (7) there existg a> 0

Formally, the result is the same as that for the LTI case, beiCh that

the operatorsZ A and Z B replace the usual-matrix and5- A B1'Tz*X7 0llA B < 0
matrix, andX is block-diagonal. We shall see in the sequel that [O D} [ 0 I} [O D} - [0 I
this is a general property of this formalism and that this gives

a simple Way .tO Co_nStrUCt ar_]d to unqerStand the reIatIonShIpHere we do not distinguish between versiongif that differ only in the
between time-invariant and time-varying systems. spatial dimension of the identity block.

} < —plI.
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Pre- and postmultiply this by diag(Ey, Ex)* and
diag(Ey, Ex), respectively, and use (11) to get that the
matrix inequality

A BN'[E:r 0][z°Xz 0][Ex ©
C D|, [0 E 0 I||0 E
A B Ef 0]1[X 0][Ex O
e sl el Tl Al

holds, for everyk > 0. Finally, use the definition ok to see
that this last inequality is exactly

A B'z*xz o A B X 0

¢ D, o I].lc pl, o 1],

< —pI (12) [ZA ZB]
C D

for eachk > 0. This immediately implies that (10) is satisfied.
O

The following corollary relates the infinite-dimensional lin-
ear matrix inequality to the pointwise properties of the system
matrices. Fig. 1. The system function as an LFT.

Corollary 12: The following conditions are equivalent.

1) |C(I - ZA)"'ZB+ D|| <1 and1 ¢ spec(ZA). is a map or¢, & />. For convenience we define the operator

2) There exists a sequence of matricés > 0, bounded ZA 7B

above and below, such that the inequality M = [ C D }

A B [Xigr 0)[Ax B | Xk O <o Now the structured singular value @f with respect to the
Cy Dy 0 I]||Cx Di 0 I setA is

holds uniformly. (M) = sup rad(MA)
Proof: The result follows immediately from (12) in the ) ) ACBA
proof of Theorem 11 using the fact thg@* X Z), = X;4,. 0 WhereBA is the unit ball of the sei. _
In the remainder of this section we will connect the result of Now recall the definition of the set’ in (8). EachX in
Theorem 11 to the robust control object the structured singutdr Nas the property
value. In particular, we make use of the fact that the system AX = XA

function L
for all A € Ap. Namely X' is in the commutant of sefAg

G(A) = C(I — AZA)"*AZB+ D and therefore forms a so-calldd-scaling set. Having made
these connections the next result follows from Theorem 11

can be written as a linear fractional transformation A&n by applying the standard techniques (see for instance [15]) of

Using the results of the previous section, we regard= structured singular value theory.

diag(Aol, M1, Xol, - - ) as a multidimensional frequency vari- Corollary 13: There existsX € X' satisfying (9) if and
able. The setup is illustrated in the Fig. 1. In particular, th(?nly if ((M) < 1.

induced norm of the system is less than one if and only if aThis r
performance result holds for the loop description of Fig.
Applying Theorem 7, we see that [fG(A)|| < 1 for all

esult says that the combined structure of the operator
I/ and the setA is p-simple; namely the structured singular
. alue in this case is equal to its standard upper bound. This is a
A Co”espof‘d”?g to sequences of_complex ’?“mbefs on trivial consequence of the structure of this particular setup.
comple>§ u_n|t disk, then the systedi is cpntractwe. Wwe NOW " Note that Lemma 10 is equivalent to the simpler result that
state this in terms. of the structured singular value with tr}ﬁe structured singular value is equal to its upper bound for
standgrd perturbation class. the case wher@\, consists of operators of the forxy. Thus
Define the set this corresponds to the well-known result thatis equal to

Ag = {A € L(£y): A =diag(\I, \I,---),\p € C} its upper bound for the case when the perturbation class
consists of one full block and one scalar block. In the time-
and the set varying case, it is the special structure /df which allows us

to achieve the much stronger result of Corollary 13.

A = {diag(A, @) : A € 2o, & € L{£2)}- In this section we have developed an analysis condition

Hence given any element a&, the product for evaluating the induced norm of an LTV system. In this
framework the condition looks formally equivalent to LTI
[ZA ZB} [A 0} results and we will see in the next section that it leads directly
¢ DJ0 @ to a simple synthesis result.



1492 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 8, AUGUST 1999

VI. MINIMIZING THE #5-INDUCED NORM

Having developed the operator framework of the previous
two sections to deal with LTV systems we now turn to the, <=———] o
synthesis problem. That is, given a discrete LTV system, we G
would like to find a controller such that the closed-loop is
contractive. In the results of the previous section we saw that,
using the framework developed, it was possible to perform
the analysis for the time-varying case by following directly
the methods for the time-invariant case.

In this section, we solve the synthesis problem in the same
way. Our methods are in the spirit of those employed in
Packard [16] and Gahinet and Apkarian [9], and we shall see
that once we have identified the analogous objects in our cur-
rent framework, the conditions we obtain follow immediately K
from the LTI case. The development here most closely follows
[9].

Let the system(z be defined by the following state—spac%ig. 2. Closed-loop system.

equations:
Ty1 = Agzr + Biywy + Bagur 20 =0 We can parameterize the closed-loop relation in terms of the
21 = C1uzi + Diipwy + Diortix (13) controller realization as follows. First we make the following
i = Conr + Datgivn definitions:
- 4 o _ B
where z;, € Rn7 wy € Rnwa up € Rnu7 2z, € R™=, and A= 0 Ornxrn:|:| B = H:Ornxnw:ﬂ
yr € R™v. We make the physical and technical assumption that - te e o
the matricesd, B, C, and D are uniformly bounded functions C = [[01 og;xm]] C= Hg Iézo ﬂ
of time. The only restrictions on this system are that the direct N z
feedthrough termD., = 0. This is a simple condition which _ 0 By _ emeXm
. i i . E — mXm :|:| 212 - [[OZ Dl?:[l
is easy to ensure during implementation of such a system. W1, 0 2
We suppose this system is being controlled by a controller "oglxnﬂv
K characterized by Dy = Doy ﬂ
l’ﬁrl =A@ + B (14) Observe that these operators depend only on the realization of

the system(7@ and are entirely independent &f. Now group
the controller realization together into the block-diagonal
where zI € R™. The connection ofG and K is shown operator.J defined by

in Fig. 2. SinceDy; = 0, this interconnection is always

I d AK BK
well-posed. o J = HCK D"'ﬂ' (16)
We write the realization of the closed-loop system as

K, K K

st = Abxy, + BEwy, From these definitions we now see that the closed-loop pa-

(15) rameterization can be written as
2 = CkL.Tk + D’ka

A=A+ BJC B"=B+BJDy

ct=C+D,,JC D'=D D,,JD (@7
= Dy JC =D +DpJ Dy

where z;, contains the combined states 6f and X, and
AL, BE, CE| and DE are appropriately defined. Hergé: €

n—+m n—+m H
REvtm)x(ntm) wheren is the number of states @ andm pere each operator is block-diagonal. The crucial property of

is the numbelr 9f statesqu. I hat both stabil this parameterization is that each operator depeaifiitselyon
We are only interested in controllefs that both stabilize . ~ontroller realization.

G and provide acceptable performance as measured by the?‘he following result makes use of the affine expressions for

induced norm of the mag +— 2. The following definition o ¢josed loop to give a test for whether a given controller

epri_SS{?S our.syntheS|s goal. is admissible. In order to state this result, define the following
Definition 14: operators:

A controller K is anadmissible synthesi®r G in Fig. 2,
if 1 ¢ spec(ZAL) and the closed-loop performance inequality P := [B* OEZ’J’"”‘)X("’J’"") OZ”J’"“)X"“' D3]
lw — z|le,—e, < 1is achieved. 0= [O(rn-l—nu)x(n-l—rn) c D O(rn—l—nu)xn;]

Hence, recalling Proposition 6 we are requiring the closed- ) & = = 6 )
loop system defined by (15) be exponentially stable, in additiiurther letX” be the set of strictly positive block-diagonal
to being strictly contractive. operators, defined as in (8), with block structure corresponding
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to that of AL, Then, forX € X%, define matrix sequences we can construct block-diagonal operators
_7*X-'7 A B 0 Uy, Uz, V1, andVs. In general the blocks here may not all have
1+ _ A the same number of columns but will all have the same number
) A X 0 C ) Ve ’
Hx = B _ x |- (18)  of rows. However, in the general case it is straightforward
B 0 I Di : g - :
0 C Dy -I to show that this operator is well-defined, and the matrix

product RU; is block-diagonal for anyR with compatible
block-diagonal structure. However, for notational simplicity
in the following we consider only the case when all blocks
are the same size, although in fact the formulas we derive are
valid in the general setting.

The following result gives the desired test for admissibility.

Lemma 15:The controller K described by the block-
diagonal operator/ is admissible if and only if there exists
X € &L such that

Hx +Q"J'P+PJQ<0. (19) Define
Proof: We first apply the Schur complement to i 0 0 0
Theorem 11, to see that, with the controllgrin place, the 0 I?l 0 0
closed-loop performance criterion is satisfied if and only if Wp = 0 I I(’)" 0
there existsX € X% such that 8 8 62 Igz
—Z*X~"'z AY BF 0 vV, 0 0 62
X L - 21
A X0 0 lco (20 0 I 0 0 (21)
B 0 -1 D 2
L L 0 o0 I 0
0 or broAl 7, 0 0 0
1
We can now substitute into this equation the expressions in Wq = 0O 0 0 0
(17) for the closed-loop realization in terms.bfthe controller Uy 0 0 0
realization. This immediately gives the desired result. O Lo 0o o I

Note that (20) can be expressed equivalently as
—-X"' ZAY zZBt 0
Az —-x o oY

It is apparent thatm Wp = Ker P andlm Wy = Ker ), and

furthermoreWéWQ =1 andW;iWp = I. We are now in a
L% o | <0. position to prove the following major lemma.

BY z 0, _{ D Lemma 17: There exists a synthesis f@¥ if and only if
0 ¢ br -l there exists a block-diagonal operafére X'’ such that

This expression clearly shows the parallel between this result . .
and the corresponding result in the time-invariant case, the WpHxWp <0 and WoHxWq <0 (22)
former being derived from the latter by formally replacingyhere W, and Wy are defined in (21) andfy is defined
the A-matrix and B-matrix by ZA and ZB. However, we jn (18).
will work with (20), since it consists SOIer of bIOCk-diagonaI Proof: We start by invoking Lemma [15], which states
operators. that a controllerK is admissible if and only if there exists a

Note thatHx, P, and @ depend solely on the systefd plock-diagonal operatoX € X'~ such that
and are independent of. In order to make use of the above

lemma, we use the following important technical lemma, from Hx +Q"J*P+P"JQ <0, (23)
[16] and [9].

. . . . Applying Propositions 3 and 4, this is equivalent to
Lemma 16: Given a symmetric matri¥’, matricesE and

F, and a numbep > 0, there exists a matri®© that satisfies [Hx]+ QI [Pl +[P]/[Q]l <0
T+EOF+FOE < -1 since the block structures are compatible §uifii = .J. Hence
if and only if this operator inequality holds if and only if there exigts> 0
such that

WrITWE < =1
WieTWp < —p1
wherelm Wr = Ker F, InWg = Ker £, WiWg = I and
WiWg = 1.
In order to state the next lemma, and take advantage of this Ker[P]; = Im[Wp]r and Ker[Q]x = Im[Wo]x
parameterization, we define the sequences of matiiGes

[Hx T + QLT [Pl + [PAIQL < —BI

for all £k > 0. For eachk, this is simply a matrix equation,
and we can apply Lemma 16. Further, by construction

Use. Vir. and Vy, such that and hence the above operator inequality holds if and only if
oY v there exists? > 0 such that
1k | _ * *
m [v} = KerlBhe Dzl Welk[HxDIWrl < —51

WolwlHx :[Woli < =31
IIn|:l]1k:| — Ker[Co  Dont] Wolk[Hx 1 [Wolr < —£

Uan for all £ > 0. Now applying Proposition 4 again, this is
andV;*V, = 1 andU; U, = I, for eachk. Clearly, from these equivalent to the desired result. O
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Having proved the last lemma we have our system in exacthhere the operatord’g, Ns satisfy
the same form as the LTI paper of [9], but now we have block- . . .
diagonal operators in place of matrices. We can therefore use Im Np = Ker[B; Duo]" NpNp=1
manipulations that are formally equivalent. Im Ng = Ker[Cy Dz] NiNs =1

One problem with the result of Lemma 17 is that the
operator inequalities derived are not affineXh since both
X and X! appear in the operatd x. We would therefore
like to express them in an affine form.

To progress with this task, we must examine closely the WiHxWp <0 and WiHxWq <0 (25)
form of these inequalities and the block-diagonal operafor
which appears in them. Clearly, each blaEk has dimension hold. It is therefore sufficient to show that the existence of
(n+m) x (n+m). Given such a block-diagonal, define such anX, with the state dimensiom > n, is equivalent to

Proof: By Lemma 17 there exists an admissible synthesis
if and only if there exists an appropriately dimensioned block-
diagonal operato’X > 0 such that inequalities

the block-diagonal operator® and S via conditions 1)-3) in the theorem statement.
s N R L (Only If): First assume thak € A satisfies the condi-
X = HN* o ﬂ Xt= HL; 7ﬂ (24) tions in (25), and defing and S as in (24). Now examining

the partition of Hx and Wp it is straightforward to demon-
where Ry, Sy, € R™*™ and Ly, NV, € R™™, strate thatW, HxWp < 0 is satisfied if and only if
We will show that X satisfies (22) ifR and S satisfy
particular linear matrix inequalities. We will also see that if
there existR and S satisfying these matrix inequalities, then

Vi 0 07°[-Z*RZ AF B 0
0 I 0 A -X 0 E*CY

X can be constructed from them such that the inequalities 0 I By 0 —I Dy
in (22) hold. This will therefore give us convex necessary V2 00 0 GE Dun -l
and sufficient conditions for the existence of an admissible Vi 00
synthesis forG. « 0 1 0

In order to accomplish this we have the following lemma, 0 01
based on [16], which states when it is possible to construct a Vo 00

strictly positive operatoX’, satisfying (24), from two operators
R >0ands > 0.

Lemma 18: SupposeR > 0 and S > 0 are block-diagonal
operators with entriedi;, S, € R®*™ and that the integer

whereE = [{ 0]. Applying the Schur complement formula so
as to invertX, and permuting the blocks the above condition
is equivalent to

*

m > n. Then there exists an operatar > 0, satisfying (24), Vi 0 ARA* — Z*RZ ARCY B
with entriesX;, € Rv+m)x(r+m) it and only if Vo 0 C1RA* CiRCy —1 Dy
0 I Bf D3 -1
R I -0 1 11
I S|- Vi 0
The proof of this is nearly identical to its matrix version found % ‘82 ? <0 (26)

in [16] and so we do not include it here.

The following theorem transforms the inequalities in (22khere using the structure of is crucial. From the definition
to a condition that only depends on the plant data amjfl g, this implies that 1) holds. A similar argument starting
is independent of, the controller state dimension; moreyith W HxWq < 0 shows that 2) holds witht defined
importantly these conditions are convex. from X as in (24). Finally 3) must hold by Lemma 18 and

Theorem 19:There exists an admissible synthegisfor the definition ofR and S from X.

G, with state dimensionn > n, if and only if there exist  (If): Suppose there exist block-diagonal operatfrsaand

block-diagonal operator& > 0 and S > 0 satisfying: S satisfying 1)-3). Then by invoking Lemma 18, with set
1) +[ARA* — Z*RZ ARC* B, to ben, there exists a block-diagonal operafére X7 that
|:NR 0} C,RA* CLRCY L I Dy satisfies (24). Now routine manipulations, reversing the “only
0 I Bt D'i}l _7 if” argument, show that this{ must satisfy the inequalities in
(25). O
X [NR 0} <0 It is interesting to note that condition 1) in the above
0 I theorem can also be written as
2) Ns 01" AYZ*SZA-S A ZTSZB o N 01" ZARA*Z* — R ZARC} ZB;
{ 0 I} BiZ*SZA  BiZ*SZB, —1 D% [ oR I} CLRA*Z* CiRC*—1 Dy
€1 Dy -1 B} z* D, —-I
Ng O Nr 0
[ 0 I} <0 x [ 0 I} <0
3) R I Ni _ * 7% * AT AT _ H
I S >0 where Im Np = Ker[B3Z* Dj,] and Nj;Nr = I. This

makes the correspondence with the time-invariant case and
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the formulas of [9] clear; formally one can simply replace the VII. PERIODIC SYSTEMS AND
A-matrix by ZA and the B-matrix by ZB in the latter to FINITE-DIMENSIONAL CONDITIONS
arrive at the former.

! ) The analysis and synthesis conditions stated in Theorems 11
Note also that if we define the sequences

and 19 are in general infinite-dimensional. However, there are
two important cases in which they reduce to finite-dimensional
Im NRy, = Ker[B3;, Diy] ImNsip =Ker[Cor D2x]  convex problems. The first is when one is only interested in
behavior on the finite horizon. In this case the matrix sequences
which are directly related t&; andNs, then the conditions of A, Bx, Cx, and D, would be chosen to be zero fér> N
Theorem 19 are easily seen to be equivalent to the existeffa@ length of the horizon. Thus the associated synthesis and

of 3 > 0 such that analysis inequalities immediately reduce to finite-dimensional
conditions. The second major case that reduces occurs when
No ol AR Ay — Rygs AR, CL, By, the systentx is periodic and a periodic controlléf is sought.
[ Ry, } Cyi Ry Al CixRiCl —1 Dy Developing these conditions is the purpose of this section.
0 I B, Dy, 7 An operatorP’ on /, is said to beg-periodic if
y [N(J)sz ﬂ <_pI Zip = Pz
y ) namely it commutes witly shifts. Throughout the sequel we
No, 077 [ARSkrde =Sk ASin B Gy fix ¢ > 1 to be some integer. With this definition we can now
{ 0 I} By SkiAr B SkriBue— 1 Diyy, prove the main technical result of this section.
Cik D11 -1 Theorem 20:Suppose A, B, C, and D are g-periodic
Ns, 0 3T operators and thak' € & and satisfies (9). Then there exists
“lo 1 <—f a g-periodic operatorX,., € X such that
R, I ZA ZB]"[X,e 0][ZA ZB Xper O
20 ! - <0
I 5 C D 0 I||C D 0 I :

(27)
for all £ > 0. This gives a recursive matrix form of the ) )
solution. The theorem says that a solution exists to the performance

We now briefly outline a procedure for finding a synthesi@equa”ty if and only if a periodic solution exists. Note that
given operatorsR and S satisfying Theorem 19. Start b the proof below amounts to taking an average of a sequence of

constructing a block-diagonal operatdf, which must exist solutions to (9) where each is constructed frafrby shifting.

by Lemma 18, such that the equations in (24) hold. Thébnsimilar gveraging techniqge is used in [7], in the context of
by Lemma 17 the operatak must satisfy (22). Therefore, ime-varying control analysis.

there exists a block-diagonal operatérsatisfying (23). The Proof: By assumptionX € X satisfies (9). Therefore,
controller specified by there exist numbers > 0 and 3 > 0, such thatX > «f and

Jk:{A,’f B,ﬁ"} [ZA ZBT{X OHZA ZB}_{X 0

¢ D|lo 1|][c D 0 I}<_/ﬂ'
G Dy

(28)

: I . For convenience let = [Zoq ZOQ], and observe that*L = I
will now be an admissible synthesis f6¥. All of the above since Z*Z — I. For an integefs > 0, pre- and postmultiply

steps are convex but infinite-dimensional computations, apd . . e x .
thus in general may be hard to carry out. However, in the ne[;bte above inequality byL")" and L, respectively, to get
section we develop finite-dimensional conditions for which [ZA ZBT [(Z*)q’“XZq’“ O} [ZA ZB}

this procedure is in general feasible; see [9] or [16] for more Cc D 0 I||C D
details on carrying out such a controller construction fr&m (Z* )X Z79%
and S. - [ 0 I} < —pI (29)

We have thus derived a complete solution to the induged ) ) )
norm synthesis problem for discrete LTV systems, simply tyyhlch easily follows from the facts that? commutes with
following the methodology used in the time-invariant case ift- B, ¢, and D: ] ] ]
[9], [16] and making use of the mathematical tools developed From (29) defineM and @y in the obvious way to write
in this paper. The solution derived holds for general systemstf} ineéquality more compactly as
the same way as the LTI solution; there are no requirements M*QpM — Qi < —p1. (30)
that D12 or Ds; be full rank or thatD;; be zero. Further, _ _
this solution has the important property of being convex. Thidotice that @ > ol and [[Qx|| < max{||X]],1} since
offers not only powerful computational properties, but als§” %4 = {. Now defineYy to be the finite average
gives insight into the structure of the solution. 1 V=L

The next section gives a particularly simple derivation of Yv = N Z Qk, for N > 1. (31)
the solution for periodic systems by making use of convexity. k=0
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Since the sequenc®; is bounded, so is the sequenkg. Corollary 21: SupposeA, B, C, and D are g-periodic
Thus there exist a subsequentg, and an operatory” operators. The following conditions are equivalent.

to which the subsequence converges in the weak operatory) |C(I — ZA)~ 1ZB+D|| < 1andl ¢ spec(ZA).
topology (see for instance [10] for this property). Without Ioss  2) There exists a matriX € X such that

of generality we assume
[ZA ZB} [X 0} [ZA ZB} 3 [X 0} <0

weak

lim Yy "2°Y. ¢ DJ||o I||C D 0 I
N—oo 32)
ClearlyY must be self-adjoint and satisly > «f since each (
Y has these two properties. AlS6 has the form Thus this corollary gives a finite-dimensional convex condition
X 0 for determining thef>-induced norm of a periodic system of
Y = { Ser I} the form in (1). This condition can be checked using various

convex programming techniques; see for example [5] for a
whereX ., € X because, for eacN, the operatol’y has this synopsis of such methods.
form, andY is the weak limit of this sequence. To complete In the case of a periodic systeé the infinite-dimensional
the proof we must show tha¥?X .. = X,..Z? and X},.. synthesis conditions of the last section can be extended to ob-
satisfies (27). tain finite-dimensional ones. This gives the following synthesis

To show the former we demonstrate tHaty' . = Y: from result.
(31) and the definition o€, in (30) it is easy to verify that Theorem 22:Suppose A4, B, C, and D are g-periodic
1 operators. There exists an admissible synth&sier G, with

LYyL—-Yn = N{QN — Qo}. state dimensionn > n, if and only if there exist block-

_ . diagonal matrice®z > 0 and S > 0 satisfying:
Thereforelimy_,..{L*Yy L—Yx} = 0, and by the properties

of weak convergence it follows thdt*Y L — Y = 0. g Ne 01 ARA* — Z*RZ ARCY By
Finally to show thatX ., satisfies (27), we use linearity of [ 0 I} C1RA* CiRCf -1 Dy
(29) and the definition ol’y to see that B Dy —I
M*YyM — Yy < —pI « [JY)R ﬂ <0
holds for eachN > 1. Again, it is routine to show using 2)

M*YM —Y < —p1, which immediately implies that (27) is BrZ*SZA BrZ*SZB, —1 D3

the definition of weak convergence that this necessarily means”’ «TA*Z*S7A— 8§ A*Z*S 7B, 01
S
satisfied. O { 1 } o) Dy I

Before stating the next result we require some additional Ne 0
S
notation. Suppose€) is a g-periodic block-diagonal operator, X { 0 I} <0
then we defing) to be the first period truncation 6f, namely
Qo 0 3) R I >0
0 Qq—1 - - .
where the operatord’g, Ns satisfy
which is a matrix. Also define the cyclic shift matri%, for - S o
g > 2 by Im]\fR:Ker[BiQ ?12] NpNr=1
0 o I Im NS = Ker[02 D21 ] NSNS =1.
- I . 0 This theorem reduces the existence of a synthesig:fto a
Z= . : matrix condition. To prove the theorem one first shows that
i I 0 there exist operator& and S satisfying Theorem 19 if and
only if there existg-periodic solutionsR,,., and S;,.;. This is
such that . . 1 !
0O, 0 _done using the same averaging argument that was employed
in the proof of Theorem 20. Theorem 22 follows immediately.
Z2*QZ = ) Solutionsk and S above can be used to construaj-periodic
Qq—1 controller K and therefore the theorem also gives the result
L0 Qo that a synthesis exists fof if and only if ag-periodic synthesis

Forg = 1 setZ = I. Also define the truncation of the seteXIsts.

X, defined in (8), by
- - VIIl. CONCLUSION
X ={X:XeX} ) .
In this paper we have developed a new operator theoretic
Using these new definitions we have the following corollarframework for the treatment of time-varying systems. The key

of Theorem 20 and Theorem 11. feature of this new setting is that LTV systems viewed in the
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framework look formally equivalent to LTI systems. Indeedi4] S. Lall, “Robust control synthesis in the time domain,” Ph.D. disserta-
state-space matrices are replaced by block-diagonal Operaiﬁ?]' tion, Engineering Department, Cambridge Univ., 1995.

We have developed tools for effectively working in thi

A. Packard and J. Doyle, “The complex structured singular value,”
Automatica vol. 29, pp. 71-109, 1993.

environment and shown how to apply this machinery to sohi&6] A.Packard, “Gain scheduling via linear fractional transformatioSgst.

general versions of thé/., analysis and synthesis problems, .,

Contr. Lett, vol. 22, pp. 79-92, 1994.
1 R. M. RangeHolomorphic Functions and Integrable Representations in

for time-varying systems. The results appear similar to those™ several Complex Variables New York, Springer, 1986.
for LTI systems, except that in the general case they a8l M. Sampei, T. Mita, and M. Nakamichi, “An algebraic approach to

infinite-dimensional convex problems. In the case of periodic

H . output feedback control problems3yst. Contr. Lett.vol. 14, pp.
13-24, 1990.

systems it was seen that these conditions reduced to bejrg) M. VidyasagarNonlinear Systems Analysnd ed. Englewood Cliffs,
finite-dimensional. NJ: Prentice-Hall, 1993.

L. Xie, C. E. de Souza, and Y. Wang, “Robust control of discrete time

. . . . 20
Since the ap_proac_h developed n this paper eStab“Sheé A uncertain dynamical systemsAutomatica vol. 29, pp. 1133-1137,
strong connection with LTI analysis techniques, we believe 1993.

that it may find wider application in time-varying system

:{)21] V. A. Yacubovich, “A frequency theorem for the case in which the
state and control spaces are Hilbert spaces with an application to some

analysis in the context of robust control. problems of synthesis of optimal controlsSibirskii Mat. Zh, English

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]
(9]

(20]
(1]

[12]

(23]

translation inSiberian Math. J.vol. 15, pp. 639-668, 1975.
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