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Abstract—We consider a wireless sensor network with energy
constraints. We model the energy consumption in the transmitter
circuit along with that for data transmission. We model the bottom
three layers of the traditional networking stack—the link layer,
the medium access control (MAC) layer, and the routing layer.
Using these models, we consider the optimization of transmission
schemes to maximize the network lifetime. We first consider the
optimization of a single layer at a time, while keeping the other
layers fixed. We make certain simplifying assumptions to decouple
the layers and formulate optimization problems to compute a
strategy that maximizes the network lifetime. We then extend this
approach to cross-layer optimization of time division multiple
access (TDMA) wireless sensor networks. In this case, we con-
struct optimization problems to compute the optimal transmission
schemes to an arbitrary degree of accuracy and efficiently. We
then consider networks with interference, and propose methods
to compute approximate solutions to the resulting optimization
problems. We give numerical examples that illustrate the compu-
tational approaches as well as the benefits of cross-layer design in
wireless sensor networks.

Index Terms—Cross-layer design, energy efficiency, network
lifetime, optimization, wireless sensor networks.

I. INTRODUCTION

THERE are a number of fundamental optimization prob-
lems that arise when designing or controlling a wireless

sensor network. In this paper, the objective is to construct these
problems and the associated constraints from the essential char-
acteristics of the wireless network model. Specifically, we focus
on those problems that arise due to energy constraints. We for-
mulate a general system model and consider the optimization of
different network objectives. Efficient computational methods
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are obtained to solve these problems exactly or in an approx-
imate manner. Some of the optimization problems formulated
in this paper can be solved using partially or fully distributed
algorithms. Hence, we can implement these algorithms as pro-
tocols to implicitly solve the relevant optimization problems in
wireless networks in a distributed manner. In very special cases,
analytical solutions can also be obtained.

Over the past few years, optimization techniques have been
used to solve many problems arising in wireless as well as wire-
line networks. The problem of flow control in the Internet was
formulated as a convex optimization problem in [1] and [2]. In
these papers, dual decomposition methods were used to derive
distributed congestion control algorithms. In wireless networks,
achievable rate combinations were computed in [3]. Cross-layer
optimizations to maximize throughput have been considered in
[4]–[9].

In this paper, we consider the optimization of various layers
for energy-constrained wireless networks. A good overview of
the design challenges and the importance of cross-layer design
in energy-constrained wireless networks was given in [10]. Re-
cent results show that the processing/circuit energy consump-
tion can have a great impact on the capacity as well as the op-
timum transmission schemes for medium access control (MAC)
channels [11], [12]. For wireless sensor networks, we may not
always need to operate on the boundary of the achievable rates
region. Hence, we have a choice among various transmission
strategies (routing, power control, scheduling) that we can ex-
ploit to increase the lifetimes of such networks. An overview
of the synergy between the various layers in a wireless network
was given in [13].

We consider a wireless sensor network of nodes distributed in
a certain region (see, for example, [14], [15]). We assume that
each node has a limited energy supply and generates informa-
tion that needs to be communicated to a sink node. Also, each
node can vary its transmission power, duty cycle, and modula-
tion scheme. We will use transmission scheme/strategy to refer
to the data rates, transmission powers, and link schedule for a
network. For energy-constrained wireless networks, we can in-
crease the network lifetime by using transmission schemes that
have the following characteristics.

1) Multihop routing: In wireless environments, the received
power typically falls off as the th power of distance, with

. Hence, we can conserve transmission power
by using multihop routing in long-range applications [16],
[17].

2) Load Balancing: If a node is on the routes of many source-
destination pairs, it will run out of energy very quickly.
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Hence, load balancing is necessary to avoid the creation of
hot spots where some nodes die out quickly and cause the
network to fail [18].

3) Interference mitigation: Links that strongly interfere with
each other should be scheduled at different times to de-
crease the average power consumption on these links [19].

4) Scheduling: Given a fixed number of bits to transmit over
a link, we can reduce the average transmission energy over
the link by scheduling it for as long as possible. Hence,
weakly interfering links should be scheduled together so
that each link has a longer duration of time to transmit the
same amount of data.

We use the standard approach of viewing the wireless system
as consisting of layers. The lowest layer is the physical or the
link layer, where the objective is to choose the transmission
power and rate to minimize the energy consumption to transmit
at a given average rate. The next layer is the MAC layer, where
the objective is to select a link schedule. The uppermost layer is
the routing layer. We first consider the optimization of one layer
at a time, keeping the other layers fixed. We then extend our
models to compute cross-layer schemes that are energy/lifetime
optimal. The problems considered in this paper are either convex
optimization problems, or can be approximated by convex opti-
mization problems.

We note that parts of the work in this paper appear in [11]
and [20]–[23]. These papers considered different resource allo-
cation problems in energy-constrained networks. In particular,
optimization of the link layer and the routing layer were consid-
ered in [11] and [21], respectively. In this paper, the goal is to
connect these different special instances of network optimiza-
tion problems and put them in a common framework. Thus, in
this paper, we provide a network-wide view of seemingly dis-
parate results. Also, we neglect the energy consumption in the
receiver circuit to simplify notation and make the presentation
clearer. The extensions to modeling receiver circuit energy are
quite straightforward; we refer the reader to [22] and [24].

A. Outline

The rest of the paper is organized as follows. The system
model for the wireless sensor network is described in Section II.
In Section III, we model one layer at a time and formulate opti-
mization problems to optimize each layer to maximize the net-
work lifetime. In Section IV, we extend the models to cross-
layer optimizations in TDMA-based wireless sensor networks.
Section V describes the methodology for cross-layer optimiza-
tion in interference-limited sensor networks.

II. SYSTEM MODEL

A. Network Graph

We consider a static wireless sensor network, modeled by a
directed graph , where is the set of wireless nodes
and is the set of directed links. Each link is from a transmitter
(initial) node to a receiver (destination) node . A link exists
from node to node if the received power at node , when node

transmits at maximum transmission power and no interference
is present, is greater than a predefined threshold. Note that, in

general, we can consider a very low threshold; this would cor-
respond to a fully connected network. However, this introduces
many links in the network graph and hence, many optimization
variables, making the cross-layer optimization problem more
complex. By introducing a reasonable threshold, we do not con-
sider links that are very weak—these links will not only con-
sume a lot of power, but also cause a lot of interference to the
other links. For an information theoretic justification of this ap-
proach, we refer the reader to [25].

We define the incidence matrix of the graph as
follows:

if is the transmitter of link
if is the receiver of link
otherwise.

Let us write , such that if ,
and , have only 0 and 1 entries.

We assume that each node generates information at rate
and has total battery energy . The goal of the network is to

communicate the information generated by each node to a sink
node. For the sink node, we take .
Thus, we consider a single commodity flow to simplify nota-
tion. However, the methods in this paper apply to the multicom-
modity flow scenario as well.

B. Slotted Time

We consider time to be slotted into discrete time slots num-
bered 0, 1, 2, , where each slot is of equal length . Let
denote the transmission power used by the transmitter of link
to send data over link and time slot . Similarly, let de-
note the corresponding rate. We will restrict (and )
to be periodic functions of the slot index , with period .
Thus, the network time shares between transmission modes
in a periodic fashion. We will use the term schedule frame to
refer to a period of time slots. Let denote the average flow
rate over link . Thus, we have .

C. Physical Layer

Associated with the graph is the link gain matrix
. , , denotes the power gain from the trans-

mitter of link to the receiver of link . Note that depends
upon the path loss from the transmitter of link to the receiver of
link . It is also a function of the links and —it depends on the
antenna gains, and the correlation between the code sequences
if code division multiple access (CDMA) is used. The channel
over each link is assumed to be an additive white Gaussian
noise (AWGN) channel, with noise power spectral density
over the bandwidth of operation . The total interference and
noise power at the receiver of link during slot is given by

. We assume that the interfer-
ence is Gaussian. From an information theoretic viewpoint, this
is a conservative assumption since Gaussian noise is the “worst
noise” [26]. The signal to interference and noise ratio (SINR) at
the receiver of link during slot is defined to be

(1)
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We assume that the bit error rate (BER) is kept constant and
same for all links. Then the rate that can be supported over link

with SINR satisfies

(2)

where . This is a standard model for
modulation schemes such as M-quadrature amplitude modula-
tion (MQAM) with constellation size greater than or equal to 4
[27]. Note that we have relaxed the constraint that the constella-
tion size is an integer; thus can take all non-negative real
values. This reduces the computational complexity from that of
solving integer programs to that of solving convex optimiza-
tion problems in many cases. Real values of constellation sizes
are technologically feasible but need high complexity hardware
[28]. If only integer values of constellation size can be used,
then our methods provide approximate solutions.

Another approach to model interference is to use a combi-
natorial interference model, for example, protocol model [29].
The scheduling constraints can then be modeled by a conflict
graph [6], [30]. We note that many combinatorial models like
the protocol model do not model all the interference in the net-
work. For throughput optimization algorithms for such models
we refer the reader to [6].

D. Power Consumption Model

For each link, we model the transmission and circuit energy
consumption at the transmitter. We do not consider the energy
consumption for reception; the methods described in this paper
can be easily extended to model the energy consumption at the
receiver as well. The nature of the problems or the computa-
tional approaches to solve them do not change when we in-
clude the receiver circuit energy as well; only the optimal op-
erating point of the network changes. Consider a slot and
link with the transmission rate over link given by .
Assume that the transmission powers over all other links are
fixed. From (1) and (2), we can see that the minimum trans-
mission power over the link to transmit at rate is given
by . Hence, the trans-
mission energy needed to transmit at rate for one slot
is . Then the total energy consumption in slot at the
transmitter of link can be approximated as [11, sec. 5]

(3)
where and are system constants. The physical interpretation
for these constants is as follows:

ratio of overhead power consumption in the power am-
plifier to the transmission power;

energy consumption in the transmitter circuit, excluding
that in the power amplifier.

We denote the vector of transmission powers over the links in
slot by . Let us define the function
as follows: if , and 0 otherwise. Then

gives the set of nodes active in slot . The average

power consumption at node during a schedule frame of slots
is given by

(4)

where denotes the set of outgoing links at node . Here,
we have neglected the overhead energy consumed each time a
node turns on to transmit in a schedule frame [11]. Usually, this
value is small and hence can be neglected if a node transmits for
a time much longer than the time it takes to turn on.

E. Flow and Energy Conservation

The total outgoing flow at a node should be equal to the sum
of the total incoming flow and the flow generated at the node
itself. Thus, we have the flow conservation constraint at node
given by

(5)

where and denote the set of outgoing and incoming
links, respectively, at node . Note that the flow conservation
equations are satisfied at the frame timescale. This necessitates
the use of buffers at each node.

If a node is alive for time , the energy dissipated by it in
time should be less than or equal to the initial energy .
Hence, we have the following energy conservation constraint at
each node .

(6)

F. Objectives

The optimization objectives for networks with finite energy
may differ depending on the circumstances and the data model.
We consider three different objective functions in this paper.

1) Total Power Consumption: For a scenario, where the
source rates change randomly with time, minimizing the total
power consumption at all nodes will save power, on an average,
at each node. However, we assume that the rate at which the
flow changes is much slower than the rate of convergence of
the network optimization algorithms. A weighted sum of power
consumptions at nodes can be used to give more importance
to nodes close to the sink, as they will, on an average, support
higher data rates.

2) Minimum Node Lifetime: Let denote the time at which
node runs out of energy. Then the minimum node lifetime is
given by . This is a good metric when all the
nodes in the network are critical to network operation. This defi-
nition makes the analysis tractable for many different scenarios.
Another interpretation of the optimization problem that maxi-
mizes the time at which the first node dies is that it minimizes
the maximum ratio of average power consumption to initial en-
ergy among all nodes—it thus balances the data flow in the net-
work such that no node incurs a very high power consumption.
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Fig. 1. Network lifetime for a gridded network.

Hence, for a large network with many redundant nodes, a subop-
timal but reasonable approach would be to use the transmission
scheme that maximizes the time at which the first node dies,
and recompute the transmission scheme once the topology has
changed significantly after many nodes run out of energy. Until
then, the same transmission scheme can be used with greedy
readjustment of flows.

3) Concave Functions of Node Lifetimes: In many scenarios,
we can consider an operational definition of network lifetime
as a concave function of node lifetimes. In particular, we de-
fine , where is a con-
cave function in the vector of node lifetimes, and is now de-
fined to be the total time for which flow of node is supported.
Note that minimum node lifetime is a special case of this gen-
eral definition. For example, consider a sensor network of ran-
domly distributed nodes in a certain region, as shown in Fig. 1.
The deployment region of the network has been divided into a
grid of 16 regions. Two nodes are connected by an edge if they
can directly communicate with each other using a transmission
power less than the maximum allowable transmission power at
each node. Let denote the set of nodes in region . We as-
sume that the network is functional as long as at least one node
in each region can sense data. This would correspond to a net-
work lifetime given by the concave function of node lifetimes,

. Note that the time for which at
least one node is active in region is . This is because
all nodes in a particular region can take turns to transmit data.
Now lets further consider a network to be partially functional
as long as some regions have at least one alive node. More-
over, sensing in some regions can be more important than that in
others. In such a scenario, we can consider the network lifetime
to be a weighted linear sum of the lifetimes of the individual re-
gions, i.e., .

G. System Parameters

The system parameters that we use for the computational re-
sults in this paper are listed in Table I. For the rest of the paper, to
simplify notation, we take the bandwidth . The values of
transmission rates can then be interpreted as being normalized
with respect to the bandwidth. Also, we take

mW. In addition, we take , where is a
constant given in Table I and is the distance between the re-
ceiver of link and transmitter of link . This corresponds to a

TABLE I
SYSTEM PARAMETERS

deterministic path loss model where the receiver power falls off
as the fourth power of the distance from the transmitter.

III. LAYER-WISE OPTIMIZATION

We first consider optimizing each layer separately to max-
imize the network lifetime. The layers that we consider are
the link and routing layers. For the routing layer, we obtain
distributed algorithms to maximize network lifetime. Also, in
this section we consider transmission schemes without interfer-
ence—we assume TDMA for the MAC layer. Thus, we allow
only one link in the network to transmit at any given time. This
is a good paradigm in small networks in which links interfere
strongly, i.e. the terms , , are comparable to . For
TDMA transmission schemes, we have if link is
active in slot .

From (3), we see that the power consumption to transmit at
rate over a link is of the form ,
where . The function is convex for .
Hence, time sharing between two transmission modes with dif-
ferent rates consumes more power than transmission at a uni-
form rate equal to the average rate. Thus, if a link is active over

slots, the energy efficient scheme is to transmit at a uniform
rate during the slots. In this section, we will denote by
and the transmission rate and power, respectively, over link

when it is active. Thus, we have suppressed the dependence
of the transmission rate and power on the slot index , since
the optimal scheme for a link is to transmit at the same rate and
hence same power over all active time slots.

The average power consumption at node , given by (4), can
be written as

(7)

where is the number of slots per frame during which link
transmits at rate using transmission power

(8)

A. Link Layer

We fix the MAC and the routing layer, i.e., the average flow
rate and the number of time slots allocated to each link

in every frame are fixed. We assume that the MAC layer mit-
igates interference between active links. Hence, we neglect the
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Fig. 2. Power consumption on a single link. (a) Total average power. (b) Average transmission power.

cross-link interference terms and approximate if
link is active in slot . The goal is to select the transmission
rate for each link to minimize the power consumption on the
links and hence maximize the network lifetime. The only con-
straint is that each link has to transmit at an average rate .
This can be written as . Also, in Section II-B,
we assumed that the transmission power and rate
remain constant over a single slot of length . Hence, the amount
of time that each link is active in a given frame should be a mul-
tiple of , i.e.,

(9)

The objective is to minimize the total power consumption in
the network. This can be written as the following optimization
problem with variables , .

(10)

Note that the objective function and the constraints are sepa-
rable in the variables ’s. Hence, we can solve the optimiza-
tion problem for each link separately to minimize the transmis-
sion power over each link. Moreover, for each link we have
an optimization problem in one variable , with being al-
lowed to take only finitely many values. This problem can be
solved easily using bisection search since the objective function
is convex.

We note that similar observations were made in previous
works, for example [11] and [31]; we have included link-layer
optimization here for completeness.

1) Example: Here, we illustrate the trade-off between re-
ducing transmission power by transmitting at a low rate for
a longer time, and reducing circuit power by transmitting in

bursts. Consider two nodes separated by a distance , with one
node transmitting data to the other node at an average rate of

bits/s/Hz. If is the rate of transmission, the transmitter
turns on for a fraction of time. The total average power con-
sumption is given by [see (3)]

where is the link gain. Also, the average
transmission power used by the link is given by

. For , is minimized
at . Thus, to minimize the average transmission power,
we should choose the lowest possible data transmission rate.
Fig. 2 shows the total average power consumption and the
average transmission power as a function of the transmission
rate, for different distances . We can see that as the distance
between the two nodes increases, the optimal transmission rate
decreases. This is because as the distance increases the trans-
mission power increases but the circuit power remains constant.
Hence, lowering of transmission power by reducing the trans-
mission rate becomes increasingly important to decrease the
average power consumption. Thus, the optimal transmission
scheme for a small distance is more bursty than that for a large
distance.

B. Routing Layer

We now fix the link and the MAC layers. Thus, the transmis-
sion rate and the maximum number of slots for which
each link can transmit during each frame, is fixed. We have
the following constraint on the maximum flow over a link

. We also have the constraint given in
(9). However, in this section, we will assume that each frame
is divided into a large enough number of slots such that we can
drop this constraint while computing the optimal routing flow.
We can thus approximate the number of slots for which link

transmits data by . This is a good approximation if
is small compared to , which would be
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Fig. 3. Load balancing to maximize the network lifetime. (a) Topology. (b) Optimal flow.

the case if each frame is divided into a large number of slots.
The average power consumption at node follows from (7):

where

(11)

Since and hence are fixed, is a constant for a given link .
Also, since the total initial energy at node is , the lifetime of
node under flow is given by .

1) Maximizing Minimum Node Lifetime: Here,
. The goal is to select a flow such that it sat-

isfies the maximum rate constraint and the flow conservation
constraints in (5), and maximizes the network lifetime .
This can be written as the following optimization problem in
variables , :

(12)

We note that this problem formulation was first considered in
[18]. Using the definition of , the above problem can be
rewritten as follows:

where denotes a diagonal matrix with the th diagonal
value equal to . The variables are , , . The last
constraint implies that no node runs out of energy as long as
the network is alive. The value of obtained by solving this
problem gives the optimal value of the network lifetime. Using
a change of variable , we obtain the following linear
programming problem:

(13)

This problem can be solved efficiently in a centralized manner
to compute a maximum lifetime routing flow.

If we assume that there is a flow such that ,
and it satisfies the flow conservation equations, we can choose
a value of large enough to satisfy the energy conservation
constraints with strict inequality. Then the Slater’s condition
for constraint qualification is satisfied (see, for example, [32])
and hence, strong duality holds. Thus, we can solve the primal
problem via the dual. It can be seen that the dual problem is sep-
arable in the variables . Hence, we can exploit dual decompo-
sition methods to obtain partially distributed subgradient-based
algorithms to solve problem (13). Adding a regularization term

for small (for which the suboptimality of
the solution can be bounded as in [21]), the sequence of primal
iterates is given by

(14)

where ’s and ’s are dual variables. The subgradient of the
dual function at is given by

(15)

Since the dual function is differentiable, the sequence of
primal iterates converges to a solution of the regularized primal
problem. For details, see [21]. Also, note that similar methods
can be used to obtain fully distributed algorithms as well.

We note that distributed algorithms to compute a routing
scheme to maximize the minimum node lifetime were also
proposed in [18], [33], and [34]. However, these algorithms
do not readily extend to more general definitions of network
lifetime. As we will show later in this section, the subgradient
algorithm is applicable to much more general scenarios.

2) Example: We now illustrate the importance of load
balancing in maximizing the network lifetime. We consider a
simple topology shown in Fig. 3(a). Nodes 1, 2, 3, and 4 are
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source nodes generating data at an average rate of 0.1 bits/s/Hz.
There are 16 links in the network, each pair of links in opposite
directions is shown by a single edge in the figure. We assume
that the transmission rate over each link is 8 bits/s/Hz when
active. Thus, we model a scenario where the network supports
low data rates compared to the achievable rates over the net-
work. From (8) and (11), we have

where is the distance between the transmitter and the receiver
of link . We assume that each source node has the same amount
of initial battery energy. The optimal flow that maximizes the
network lifetime is shown in Fig. 3(b). The flow direction and
value is indicated for each link. We see that node 1 distributes
its flow over three different paths instead of sending all its flow
along the minimum cost path , . This helps to con-
serve energy at node 3 and hence increase the network lifetime,
which is the time at which the first node in the network runs out
of energy.

3) Maximizing Concave Function of Node Lifetimes: Until
now we considered the network lifetime to be the time at which
the first node runs out of energy. Thus, we assumed that all
nodes are of equal importance and critical to the operation of the
sensor network. However, for a heterogeneous wireless sensor
network, some nodes may be more important than others. We
now model the lifetime of a network to be a function of the times
for which the nodes in the network can forward their data to the
sink node. In order to state this precisely, we redefine the node
lifetime and the network lifetime for the analysis in this sec-
tion. In addition, we will drop the constraint on the maximum
rate over a link. We will assume that the network operates in
a low-data-rate regime, and hence we can easily re-allocate
such that .

Each node generates data at rate . Let be the
rate at which link transmits data, originally generated by node

. The flow conservation equations at node for the flow origi-
nating at node can be written as follows:

(16)

where is such that if , and 0 otherwise.
We define , the lifetime of node , to be the total time for
which node generates data that is transmitted over the network
to the sink node. Then the total number of bits sent over link
is . The energy constraint at each node is given by

where is defined in (11). We consider a generic definition of
network lifetime given by a concave function of the node life-
times. In particular, we define , where

is a concave function in the vector of node life-
times. In the previous sections, we considered the special case
of .

We can write the problem of maximizing the network lifetime
as follows:

We apply a change of variables . We can interpret
as the total number of bits generated by node , transmitted

over link . We can rewrite the above problem as the following
convex optimization problem:

(17)

Then, we can interpret the first set of constraints as bit conser-
vation equations. Since the data from all the nodes is routed to a
single sink, solving the above problem is equivalent to solving

(18)

where is the total number of bits transmitted
over link . From the solution of this problem, we can easily
obtain an optimal flow , , which is a solution to
problem (17).

IV. TDMA-BASED WIRELESS SENSOR NETWORKS

The general cross-layer problem of optimizing the physical,
medium access control, and routing layers to minimize network
energy consumption is complex and hard to solve. Heuris-
tics to compute approximate solutions and high-complexity
algorithms to compute exact solutions have been proposed
in the literature. A representative set of such results include
[13], [19], and [35]. In this section, we restrict to networks
with interference-free link scheduling and practical MQAM
link transmission schemes. We show that the cross-layer op-
timization problem can be closely approximated by convex
optimization problems that can be efficiently solved using
standard interior point methods. We note that interference-free
scheduling is suboptimal but still performs well in small scale
wireless networks where the links strongly interfere with
each other. This is the most general cross-layer optimization
problem that has been solved efficiently; no efficient compu-
tational methods are known to solve the problem for more
general scheduling schemes. While we do not discuss in detail,
the optimization problems in this section can be solved in a
decentralized manner using the techniques in [36]. Also, we
note that similar optimization problems for throughput maxi-
mization with more restrictive system models were considered
in [8] and [37].
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A. Power Consumption

Consider the case where the average flow rate over link is
. We consider the simple case where the MAC is restricted to

TDMA. Then if a link is allocated slots, the rate at which
it transmits data is

(19)

Substituting the above relation in (7) and (8), the average power
consumption at node is

(20)

where gives the average
power consumption over link as a function of and . Also,

and are suitably defined constants for link . The function
, defined for , is the perspective of the

exponential function, and so is convex in and (see, e.g.,
[32, sec. 3.2.6]). The function is obtained from by an affine
composition, and the addition of a linear term, and so is convex.

B. Cross-Layer Lifetime Maximization

As in Section III-B, we can write the lifetime of node as
. We now consider the joint op-

timization of the link, MAC, and routing layers. Thus, the vari-
ables are , , and for each link . Note that the values
of two of these variables automatically determine the third one.
For example, if the average flow rate and the number of slots
is fixed, we have given by (19). Also, the flow variables
have to satisfy the flow conservation equations in (5). Hence, the
problem of maximizing the network lifetime can be written as

(21)

where the variables are , ’s, and ’s. Hence, it can
be solved using branch and bound methods. Also, relaxing

to again gives a convex optimization
problem which can be solved efficiently. The resulting solution
gives the optimal transmission scheme where the MAC is
variable-length TDMA.

Fig. 4. Cross-layer optimization for TDMA networks. (a) Topology. (b) Power
consumption.

C. Cross-Layer Power Minimization

We now consider a related problem, that of minimizing the
total power consumption. We will see that for this objective
function, it is sometimes possible to obtain analytical solutions.
The problem of optimizing the different layers to minimize the
total power consumption can be stated as the following opti-
mization problem:

(22)

where the variables are ’s, and ’s. Again, for computational
tractability, we make an approximation and relax to take real
values.

1) Example: We now demonstrate the advantages of cross-
layer optimization for TDMA networks through a very simple
example topology shown in Fig. 4(a). There is one source node
generating data at rate bits/Hz/s, which it needs to transmit
to the destination. There is an additional relay node which can
be used to relay part of the data. The channel power gains are
shown adjacent to each link. We consider the following three
transmission schemes.

1) One-Hop: Here, the source transmits directly to the desti-
nation. Hence, all the spectrum is allocated to the link from
the source to the destination.

2) Two-Hop: Here, the source transmits all the data to the
relay node which then forwards it to the destination. Since,
two identical links in the network carry the same amount
of data, the optimal MAC scheme is to allocate half the
spectral resources each to both these transmissions.

3) Uniform TDMA: Unlike the above schemes, where routing
is fixed, we now fix the MAC layer. Each of the three links
are allocated equal time fractions to transmit. As a function
of the source rate, we obtain the optimal fractions of the
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data sent directly to the destination and that sent through
the relay.

Thus, the optimal routing scheme is a function of the link
schedule and vice versa. Also, as we see from Fig. 4(b), the op-
timal schemes are a function of the source rate. Hence, cross-
layer optimization is necessary to determine the optimal trans-
mission scheme to send the data from the source to the destina-
tion.

2) MAC Optimization With Link Adaptation: Here, we con-
sider the routing scheme to be fixed. This would include the
case of single hop transmissions where each node directly trans-
mits data to the sink node. In this case, the power optimization
problem can be simplified to

(23)

where the variables are the ’s. A specialized computational
algorithm to solve the above convex program was derived in
[31].

We now consider special cases where analytical solutions to
the problem can be obtained.

Special Case: Identical Equidistant Nodes
Here, we assume that the functions are the same for all

links , i.e., , , . This would be true if all
nodes have identical circuits and are located at the same distance
from the sink node. We consider the following two scenarios.

(a) Minimization of the total transmission power: Neglecting
the circuit energy consumption for reception corresponds
to setting . The corresponding optimization
problem is as follows:

(24)

We have the following result on the optimal solution.1

Lemma 4.1: The optimal solution to problem (24) is given by
.

Proof: The Karush–Kuhn–Tucker (KKT) conditions (see,
for example, [32]) for the problem can be written as

for some . It is easy to see that the KKT conditions are
satisfied by , with
and . Since the optimization problem in (24) is
convex, these ’s are optimal.

1Note that constraints such as minimum constellation size and maximum al-
lowable average power can be incorporated easily.

(b) Minimization of the total transmission and circuit power:
Note that is not a monotonically decreasing
function of . In this case, we have the following lemma.
Lemma 4.2: Let be the value of that minimizes

. Then the optimal solution to the
problem in (23) is given by .

Proof: Consider the following arbitrary feasible so-
lution that satisfies the constraints of the optimization
problem in (23): link transmits at instantaneous rate

for slots. Let . Note
that is a convex function of . Hence, the total
power consumption across all links to transmit at average
rates satisfies

where the inequality follows from Jensen’s inequality.
The quantity on the right side is the average power con-
sumption when each nodes transmits at an instantaneous
rate of . Combining this with the defi-
nition of in the Lemma, we can see that the optimal
solution is given by .

V. INTERFERENCE-LIMITED WIRELESS SENSOR NETWORKS

We now develop models for wireless networks where inter-
fering links are allowed to transmit simultaneously. For such
networks, we state the optimization problem exactly, and then
suggest an iterative method to obtain approximate solutions to
the problem. The transmission scheme computed during each
iteration is feasible. Hence, the suboptimality of the solution
can be traded off with the required computational power. The
main step of our algorithm involves the solution of a convex op-
timization problem for which the number of variables grows as

, where is the number of slots and is the number of
links in the network. Also, the number of constraints grows as

, where is the number of nodes in the network.
Here, we consider a MAC layer that is more general than

TDMA. TDMA divides the spectral resources in an orthogonal
manner by scheduling interfering links at different times. In a
large wireless network, consider two links such that the trans-
mitter of one link is separated by a large distance from the re-
ceiver of another link, and vice versa. Then if the two links are
scheduled simultaneously, they do not interfere much. Thus, we
can take advantage of frequency reuse to schedule each link for
a longer time to reduce the average transmission power on the
links. If each of these links supports a high enough rate, the
power consumption in the power amplifier dominates the power
consumption in the rest of the transmitter circuit [see (3)]. Then
the simultaneous scheduling of weakly interfering links leads to
a reduction in the net power consumption.

We consider a slotted time model, and guarantee the satisfac-
tion of average rate requirements over a predefined frame dura-
tion; this is similar to the model in [13]. We note that a slotted
model enables us to use a link schedule that mitigates interfer-
ence by scheduling strongly interfering links in different slots.
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Thus, it is more general than the model in [38]. Also, the algo-
rithm in [38] assumes that a feasible solution can be computed
for which each link has a SINR of at least 1. This is highly un-
likely in a network with many nodes and high data rates where
many links will strongly interfere with each other. Moreover,
the algorithm in [38] is for a single slot and does not extend to
a slotted time model.

The interference model in this paper is more general than the
interference model considered in [37], where the schedule for
links in the same neighborhood was assumed to be orthogonal,
and interference from distant links was neglected. Also, unlike
in [13], we consider rate adaptation on links and a fixed bit error
rate (BER) requirement. As shown in [11], rate adaptation can
lead to significant decrease in energy consumption. However,
allowing for rate adaptation on links makes the problem consid-
erably more complex. We no longer have a linear constraint on
transmission powers [13] that guarantees an SINR greater than
a threshold. Instead we have a non-linear and non-convex con-
straint on the rate and power of each link (see Section II-D for
details). In addition, we consider joint routing along with link
scheduling and power control (with rate adaptation). Also, in-
stead of minimizing the total average power consumption over
the network, we maximize the minimum node lifetime. We note
that only scheduling and power control to reduce energy con-
sumption and increase just single hop throughput was consid-
ered in [8], while [9] considered a low SINR assumption and
an infinite horizon for which they proposed an extremely high
complexity solution to maximize throughput.

A. Cross-Layer Optimization

The transmission rate over link , during slot , is bounded
by [see (1) and (2)]

(25)

The average rate over link is . Thus, the
flow conservation equations in (5) can be written as

(26)

Also, we have the energy conservation constraint in (6).

(27)

where .

The goal is to compute a transmission scheme, i.e. ,
(and hence ), to maximize the minimum node life-

time. The constraints are flow conservation and energy conser-
vation constraints given by (26) and (27), respectively. More-
over, any physically possible transmission scheme satisfies the
relation (25). This can be written as the following optimiza-
tion problem in the variables , , , for all ,

.

(28)

for all and . As in Section III-B, we can use
the change of variables to rewrite the above problem
as the following optimization problem:

(29)

for all and . This problem (as stated above)
is not a convex optimization problem, and so it is hard to solve.
We propose an iterative approach below where, in each iteration,
we solve an approximate problem that is convex.

B. Routing and Power Control

The rate constraint in the problem formulation (29) is not
convex. For a fixed link schedule, let ,
denote the sets of links allowed to be active in each slot . We
approximate the rate constraint by

(30)

This is a good approximation if the SINR over link and time
slot is high. For any SINR , is a lower bound on the
achievable rate. Hence, the feasible set corresponding to the op-
timization problem with the above approximation is a subset of
the feasible set of the original optimization problem (29). Thus,
the network lifetime computed under this approximation is a
lower bound on the optimum network lifetime. Using a change
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of variables , we can rewrite the approx-
imate rate constraint for link as follows (see, for ex-
ample, [39]):

The function is convex if , (see, for
example, [32]). Composition with an affine function preserves
convexity. Hence, the function

is convex over , . Using the above change of vari-
ables and the approximate rate constraint (30) in problem (29),
we obtain the following optimization problem.

(31)

The variables are , , , for ,
. Using interior point methods (e.g., [32]),

we can efficiently solve the approximate problem for optimal
transmission powers and rates over each link, for a given link
schedule. Geometrically, for a fixed link schedule and the
convex approximation to the rate constraint, the feasible set in
problem (31) is a convex subset of the feasible set in problem
(29).

C. Link Scheduling

The convex optimization problem (31) is feasible only if the
constraints , , are feasible.
For the approximate rate constraint, these constraints imply that
each link has an SINR during the scheduled slots. If we
schedule all links during all slots, the problem may be infeasible.
There is no simple characterization of the set of link schedules
for which the constraints , , ,
are feasible. Hence, in order to use problem formulation (31) to
compute a transmission scheme corresponding to the best link

Fig. 5. Algorithm—Solving a series of approximate convex optimization prob-
lems.

schedule, we need to solve this problem for all possible link
schedules. However, for a network of links, and for a schedule
frame that has time slots, there are different link sched-
ules. Hence, the complexity of this approach is doubly expo-
nential in the number of slots and the number of links. This re-
sults in a tradeoff between the computational complexity and
the quality of the solution. When we compare the solution for
say slots and slots, the solution corresponding to
slots gives a network lifetime greater than or equal to the life-
time corresponding to the solution for slots. This is because
we have more freedom in choosing the link schedules, and hence
can find a transmission scheme that gives a larger network life-
time. Here, we take to be a system constant.

We use a suboptimal approach to iterate between scheduling
and computation of rates and powers. The links that carry a
larger amount of traffic should be scheduled over a greater
number of time slots—this decreases the average transmission
power consumption over the links. Hence, the link schedule
is adapted to the solution of problem (31) at each iteration,
and in turn the convex optimization problem is solved for the
new link schedule. Note that we motivate our link adaptation
heuristic for a scenario in which transmission power dominates
the power consumption in the circuit. This is a realistic scenario
for interference-limited networks with high data rates. For a
discussion of the tradeoffs between decreasing transmission
power and decreasing circuit power, see [11].

The algorithm is illustrated in Fig. 5. Geometrically, the fea-
sible set in problem (31) is a convex subset of the feasible set
in problem (29). The heuristic approach proposed below solves
a series of convex optimization problems with feasible regions
given by different convex subsets of the original optimization
problem in (29). Each convex subset corresponds to a link
schedule and approximation of the rate constraints by convex
constraints.

D. Algorithm

The iterative approach used to compute an approximate op-
timal strategy is summarized in the flowchart in Fig. 6. The steps
of the algorithm are as follows.

1) Find an initial suboptimal, feasible schedule. A good can-
didate would be a schedule in which all links are activated
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Fig. 6. Iterative approach to compute powers, rates and link schedule.

at least once in each frame of slots, and also links that
are activated in the same slot interfere only weakly.

2) Solve problem (31) to find an optimal routing flow and
transmission powers during each slot for the approximate
rate constraint. If the problem is infeasible, quit.

3) Remove from if ,
where is a constant close to 1. Since we approxi-
mated the rate as SINR , links carry little traffic
over the slots in which they have an SINR of about 1.

4) Find . For this , find

Add to . Thus, we find a link that consumes the max-
imum average power over the entire frame and schedule
this link to be on during an additional time slot. The se-
lected slot should be the one in which there is minimum
interference to this link. If the resulting schedule is one that
was used in a previous iteration, quit.

5) Check if for all
and is feasible. If yes, go to 2), else quit to
prevent an infinite loop.

For small networks, we can use a TDMA schedule for step
1). If we assume that the maximum transmission power con-
straint is loose, the initial schedule is always feasible. However,
for larger networks, a TDMA schedule may not be feasible due
to the maximum power constraint. In this case, we can use edge
coloring on the dual conflict graph [6], where only links which
interfere very weakly are allowed be scheduled in the same slot.
Note that we can use the gain value as a measure of inter-
ference. For example, we can say that a link is said to interfere
with a link if ; then the total interference to any link
will be bounded by . For a detailed discussion of this
approach, we refer the readers to [6] and [7].

The algorithm uses a greedy heuristic to adaptively schedule
links at each iteration, and then re-solves the convex optimiza-
tion problem (31) to determine an optimal routing flow and link
transmission powers and rates in each slot. Thus, our compu-
tational algorithm decouples the MAC layer from physical and
routing layers. As we will see in the following subsection, even
such a simple greedy heuristic can give strategies with a higher
network lifetime than that given by static approaches to sched-
uling (e.g. TDMA and time sharing between modes in which
links separated by a minimum distance are scheduled together).
The gains in network lifetime are due to energy-efficient mul-
tihop routing, frequency reuse, and load balancing. Note that
step 3) of the algorithm can be replaced by any general algo-
rithm for updating the link schedule. Also, note that the algo-
rithm will terminate in at most steps. However, since the
solution computed at each step is feasible, we can terminate the
algorithm as soon as we have a competitive solution.

E. Example

Consider the topology shown in Fig. 7(a). We take the source
rates to be bits/s/Hz. Also, we take the dis-
tance between neighboring nodes as m. Thus, the dis-
tance is large enough such that the transmission power domi-
nates over the power consumption in the circuit. Note that the
links closer to the sink support a higher average data rate than
the links further away from the sink. We take the number of slots
in each frame . We apply the algorithm proposed in the
previous section to compute an efficient transmission scheme
for this network. The results after 25 iterations are shown in
Fig. 7. We plot the lifetime at each iteration in Fig. 7(b); the
figure also shows the network lifetimes corresponding to uni-
form TDMA (each link is given the same amount of spectral re-
source), optimal TDMA, and a spatially periodic scheme, where
frequency is reused on every third link. Our algorithm gives
a network lifetime of 12% higher than the best among these
other schemes. Also, the links carrying a higher data rate are
scheduled for a higher number of slots to reduce the average
transmission power. The total power consumption is shown in
Fig. 7(d)—the last four nodes run out of energy at about the
same time. Also, note that during each slot, more than one link is
active. Thus, the algorithm does both frequency reuse and takes
into account the different data rate on each link.
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Fig. 7. Linear topology. (a) Topology. (b) Iterations. (c) Number of slots. (d) Average power.

VI. CONCLUSION

We described a framework for modeling energy-constrained
wireless networks. The constraints imposed by the underlying
system were studied and optimization problems were con-
structed to design such networks. In particular, we modeled
the circuit energy consumption and the traditional physical,
MAC, and the routing layers. We considered the optimiza-
tion of individual layers as well as cross-layer optimization.
The optimization problems can be solved exactly for TDMA
networks. For networks with interference, we proposed approx-
imation approaches to solve the optimization problems. The
computational approaches were illustrated by several numerical
examples.
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