EE464: Lifting
Interpretations

- So far, we have seen how to compute certificates of polynomial nonnegativity.
- As we will see, these are *dual SDP relaxations*.
- We can also interpret the corresponding primal SDPs.
- These arise through *liftings*.
A General Method: Liftings

Consider this polytope in \mathbb{R}^3 (a zonotope). It has 56 facets, and 58 vertices.

Optimizing a linear function over this set, requires a linear program with 56 constraints (one per face).

However, this polyhedron is a three-dimensional projection of the 8-dimensional hypercube $\{x \in \mathbb{R}^8, -1 \leq x_i \leq 1\}$.

Therefore, by using additional variables, we can solve the same problem, by using an LP with only 16 constraints.
By going to higher dimensional representations, things may become easier:

- “Complicated” sets can be the projection of much simpler ones.
- A polyhedron in \mathbb{R}^n with a “small” number of faces can project to a lower dimensional space with \textit{exponentially} many faces.
- Basic semialgebraic sets can project into non-basic semialgebraic sets.
- Feasible sets of SDPs may project to non-spectrahedral sets.

An essential technique in integer programming.

Advantages: compact representations, avoiding “case distinctions,” etc.
Example

minimize \((x - 3)^2\)
subject to \(x(x - 4) \geq 0\)

The feasible set is \([-\infty, 0] \cup [4, \infty]\). \textbf{Not} convex, or even connected.

Consider the lifting \(L : \mathbb{R} \rightarrow \mathbb{R}^2\), with \(L(x) = (x, x^2) =: (x, y)\).

Rewrite the problem in terms of the lifted variables.

- For every lifted point, \(\begin{bmatrix} 1 & x \\ x & y \end{bmatrix} \succeq 0\).
- Constraint becomes: \(y - 4x \geq 0\)
- Objective is now: \(y - 6x + 9\)

We “get around” nonconvexity: interior points are now on the \textit{boundary}.
Quadratically Constrained Quadratic Programming

A general QCQP is

\[
\begin{align*}
\text{minimize} & \quad \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} Q & 1 \\ 1 & x \end{bmatrix} \\
\text{subject to} & \quad \begin{bmatrix} 1 \\ x \end{bmatrix}^T A_i \begin{bmatrix} 1 \\ x \end{bmatrix} = 0 \quad \text{for all } i = 1, \ldots, m
\end{align*}
\]

The Lagrangian is

\[
L(x, \lambda) = \begin{bmatrix} 1 \\ x \end{bmatrix}^T \left(Q - \sum_{i=1}^{m} \lambda_i A_i \right) \begin{bmatrix} 1 \\ x \end{bmatrix}^T
\]

so the dual feasible set is defined by semidefinite constraints.
QCQP Dual

The dual is the SDP

\[
\begin{align*}
\text{maximize} & \quad t \\
\text{subject to} & \quad Q - \sum_{i=1}^{m} \lambda_i A_i \succeq t \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}
\end{align*}
\]

and the dual of the dual is

\[
\begin{align*}
\text{minimize} & \quad \text{tr } QY \\
\text{subject to} & \quad \text{tr } A_i Y = 0 \quad \text{for all } i = 1, \ldots, m \\
& \quad Y \succeq 0 \\
& \quad Y_{11} = 1
\end{align*}
\]
Lifting

Lifting is a general approach for constructing \textit{primal relaxations}; the idea is

- Introduce new variables Y which are polynomial in x. This embeds the problem in a \textit{higher dimensional} space.

- Write \textit{valid inequalities} in the new variables.

- The feasible set of the original problem is the \textit{projection} of the lifted feasible set.
Lifting QCQP

We have the QCQP

minimize \[
\begin{bmatrix}
1 \\
x
\end{bmatrix}^T Q \begin{bmatrix}
1 \\
x
\end{bmatrix}
\]

subject to \[
\begin{bmatrix}
1 \\
x
\end{bmatrix}^T A_i \begin{bmatrix}
1 \\
x
\end{bmatrix} = 0 \quad \text{for all } i = 1, \ldots, m
\]

Use \textit{lifted variables} \(Y \in S^n \), defined by \(Y = \begin{bmatrix}
1 \\
x
\end{bmatrix} \begin{bmatrix}
1 \\
x
\end{bmatrix}^T \)

We have valid constraints

\(Y \succeq 0, \quad Y_{11} = 1, \quad \text{rank } Y = 1 \)

Every such \(Y \) corresponds to a unique \(x \)
Lifted QCQP

The lifted problem is

$$\text{minimize} \quad \text{tr} \; QY$$
subject to

$$\text{tr} \; A_i Y = 0 \quad \text{for all} \; i = 1, \ldots, m$$
$$Y \succeq 0$$
$$Y_{11} = 1$$
$$\text{rank} \; Y = 1$$

Again, we can drop the non-convex constraint to obtain a relaxation
This (happens to) give the same as the dual of the dual
QCQP Interpretation of Polynomial Programs

We can also lift *polynomial* programs; consider the example

\[
\text{minimize} \quad \sum_{k=0}^{6} a_k x^k
\]

We'll choose lifted variables

\[
y = \begin{bmatrix} x \\ x^2 \\ x^3 \end{bmatrix}
\]

then the cost function is

\[
f = a_0 + a_1 y_1 + a_2 y_2 + a_3 y_3 + a_4 y_1 y_3 + a_5 y_2 y_3 + a_6 y_3^2
\]

a *quadratic* function of \(y \) (many other choices possible)
QCQP Interpretation of Polynomial Programs

We have the equivalent QCQP

\[
\begin{align*}
\text{minimize} & \quad \begin{bmatrix} 1 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}^T \begin{bmatrix} a_0 & \frac{a_1}{2} & \frac{a_2}{2} & \frac{a_3}{2} \\ 0 & 0 & \frac{a_4}{2} \\ 0 & \frac{a_5}{2} \\ a_6 \end{bmatrix} \begin{bmatrix} 1 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} \\
\text{subject to} & \quad y_2 - y_1^2 = 0 \\
& \quad y_3 - y_1 y_2 = 0
\end{align*}
\]

to make the Lagrange dual tighter, we can add the valid constraint

\[
y_2^2 - y_1 y_3 = 0
\]

Every polynomial program can be expressed as an equivalent QCQP
Quadratic Constraints

The above quadratic constraints are

\[
\begin{bmatrix}
1 \\
y_1 \\
y_2 \\
y_3
\end{bmatrix}^T
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 2 & 0 \\
0 & -1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
y_1 \\
y_2 \\
y_3
\end{bmatrix} = 0
\]

\[
\begin{bmatrix}
1 \\
y_1 \\
y_2 \\
y_3
\end{bmatrix}^T
\begin{bmatrix}
0 & 0 & -1 & 0 \\
0 & 2 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
y_1 \\
y_2 \\
y_3
\end{bmatrix} = 0
\]

\[
\begin{bmatrix}
1 \\
y_1 \\
y_2 \\
y_3
\end{bmatrix}^T
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
y_1 \\
y_2 \\
y_3
\end{bmatrix} = 0
\]
Relaxations

We can now construct the SDP primal and dual relaxations of this QCQP

Example
Suppose $f = x^6 + 4x^2 + 1$, then the SDP dual relaxation is

$$\begin{align*}
\text{maximize} & \quad t \\
\text{subject to} & \quad \begin{bmatrix}
1 - t & 0 & 2 + \lambda_2 & -\lambda_3 \\
0 & -2\lambda_2 & \lambda_3 & \lambda_1 \\
2 + \lambda_2 & \lambda_3 & -2\lambda_1 & 0 \\
-\lambda_3 & \lambda_1 & 0 & 1
\end{bmatrix} \succeq 0
\end{align*}$$

this is exactly the condition that $f - t$ be sum of squares
The Primal Relaxation of a Polynomial Program

Since we have a QCQP, there is also an SDP primal relaxation, constructed via the lifting

\[Y = \begin{bmatrix} 1 \\ y \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix}^T \]

It is the SDP

\[
\text{minimize} \quad \text{tr} \begin{bmatrix}
 a_0 & \frac{a_1}{2} & \frac{a_2}{2} & \frac{a_3}{2} \\
 0 & 0 & \frac{a_4}{2} \\
 0 & \frac{a_5}{2} \\
 a_6
\end{bmatrix} Y
\]

subject to

\[
Y \succeq 0 \\
Y_{11} = 1 \quad Y_{24} = Y_{33} \\
Y_{22} = Y_{13} \quad Y_{14} = Y_{23}
\]
The Primal Relaxation of a Polynomial Program

This is constructed by

\[Y = \begin{bmatrix} 1 \\ y \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix}^T = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \end{bmatrix}^T = \begin{bmatrix} 1 & x & x^2 & x^3 \\ x & x^2 & x^3 & x^4 \\ x^2 & x^3 & x^4 & x^5 \\ x^3 & x^4 & x^5 & x^6 \end{bmatrix} \]

- One may construct this directly from the polynomial program
- Direct extensions to the multivariable case
- The feasible set of \(Y \) may be projected to give a feasible set of \(x \)
- If the optimal \(Y \) has \(\text{rank } Y = 1 \) then the relaxation is \text{exact}
Lifting

Higher dimensional representations have several possible advantages

- One may find *simpler representations*, e.g., polytopes
- Basic semialgebraic sets may project to non-basic ones
- Adding new variables via lifting allows new valid inequalities, which tightens the dual
- Using polynomial lifting allows more constraints to be represented in LP or SDP form
- Lifting *wraps* the feasible set onto a higher dimensional variety; this tends to map interior points to boundary points
Outer Approximation of Semialgebraic Sets

The primal SDP relaxation allows us to construct outer approximation of a semialgebraic set.

For example, one can compute an outer approximation of the epigraph

\[S = \left\{ (x_1, x_2) \mid x_2 \geq f(x_1) \right\} \]

In one variable, the SDP relaxation gives exactly the convex hull, since \(S \) is contained in a halfspace

\[\{ x \in \mathbb{R}^2 \mid a^T x \leq b \} \]

if and only if the following polynomial inequality holds

\[a_1 x + a_2 f(x) \leq b \text{ for all } x \]
Example: Outer Approximation of the Epigraph

Let’s look at the univariate example

\[f = \frac{1}{2}(x - 1)(x - 2)(x - 3)(x - 5) \]

If \(y \geq f(x) \) then the following SDP is feasible

\[
y \geq \frac{1}{4} \text{tr} \begin{bmatrix}
60 & -61 & 41 \\
-61 & 0 & -11 \\
41 & -11 & 2
\end{bmatrix} X
\]
\[X \succeq 0 \\
X_{22} = 2X_{12} \quad X_{11} = 1 \\
X_{12} = x
\]
Moments Interpretation of the Primal Relaxation

Instead of trying to minimize directly f, we can solve

\[\text{minimize} \quad \mathbb{E} f = \int_{\mathbb{R}^n} f(x) p(x) \, dx \]
subject to p is a probability distribution on \mathbb{R}^n

- This is a \textit{dual} problem to minimizing f
- If f has a unique minimum at x_0, then the optimal will be a point measure at x_0
- Essentially due to Lasserre
Moments Interpretation of the Primal Relaxation

suppose \(y = [1 \ x \ y \ xy \ x^2 \ldots]^T \), then \(f = c^T y \) and

\[E f = c^T E y \]

\(E y \) is the \textit{vector of moments} of the distribution

so we have the equivalent problem

\[
\text{minimize} \quad c^T z \\
\text{subject to} \quad z \text{ is a vector of moments of } y
\]
Example

Since $\mathbf{E} y y^T \succeq 0$ for any distribution, we have valid inequalities

$$
\mathbf{E} \begin{bmatrix} 1 \\ x \\ y \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \end{bmatrix}^T = \mathbf{E} \begin{bmatrix} 1 & x & y \\ x & x^2 & xy \\ y & xy & y^2 \end{bmatrix} \succeq 0
$$

so to find a lower bound $x^2 + 2xy + 3y^2$ we solve the SDP

$$
\begin{align*}
\text{minimize} & \quad \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} z \\
\text{subject to} & \quad M \succeq 0 \\
& \quad z_1 = M_{22}, \ z_2 = M_{12}, \ z_3 = M_{22}
\end{align*}
$$

- This is exactly the primal SDP relaxation; the dual of SOS
- Similar to MAXCUT, where the SDP relaxation may be viewed as a covariance matrix
A General Scheme

Diagram

- **Polynomial Program**
 - Lifting and Valid Constraints
 - \[y = \begin{bmatrix} x \\ x^2 \\ x^3 \\ \vdots \end{bmatrix} \]

- **QCQP**
 - Lifting and Relaxation
 - \[Y = \begin{bmatrix} 1 \\ y \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix}^T \]

- **Primal SDP Relaxation Moments**

- **Dual SDP Relaxation Sum of Squares**

- **Lagrangian Relaxation**

- **SDP Duality**

- **Primal**: the solution to the lifted problem *may* suggest candidate points where the polynomial is negative.

- **Dual**: the sum of squares *certifies* or *proves* polynomial nonnegativity.