
EE365: Approximate Dynamic Programming

1



Vehicle routing problem

I fleet of m vehicles: 1, . . . ,m

I transportation network modeled as graph with vertex set V

I vehicle k starts at a given ak ∈ V at time 0,
must end at a given bk ∈ V at time T

I reward ri ≥ 0 for visiting vertex i

I each reward can only be earned once

I no repeat reward if a vehicle visits i multiple times

I no repeat reward if multiple vehicles visit i

I after each time period, reward at i disappears with probability pi

2



Dynamic programming for vehicle routing problem

I state: xt = (z
(1)
t , . . . , z

(m)
t , St)

I z
(k)
t ∈ V: location of vehicle k at time t

I St ⊆ V: nodes whose rewards have been removed (because visited or
randomly removed)

I initial state: (a1, . . . , am, ∅)

I disturbance: wt, locations of randomly-removed rewards

I dynamics:

I zt+1 = ut

I St+1 = St ∪ {z(1)t , . . . , z
(m)
t } ∪ wt

I stage cost: g(z, S) =
∑
{ri | i ∈ {z(1), . . . , z(m)}, i 6∈ S, i ∈ V}

I terminal cost: gT (z, S) =

{
g(z, S) z(1) = b1, . . . , z

(m) = bm

−∞ otherwise

3



Complexity of dynamic programming

I v?T (x) = gT (x)

I for t = T − 1, . . . , 0; x ∈ X ,

v?t (x) = min
u∈U

∑
w∈W

(gt(x, u, w) + v?t+1(ft(x, u, w)))Prob(wt = w)

I O(T |X ||U||W|) operations

I may be intractable if any of X , U and W is very large

I often intractable due to curse of dimensionality

4



Intractability of dynamic programming for vehicle routing

I X = Vm × 2V

I |X | = |V|m2|V|

I for |V| = 252, m = 4, have |X | ≈ 10200

(≈ 1080 atoms in the observable universe)

I cannot even store value function

I U(z(1), . . . , z(m)) = N (z(1))× · · · × N (z(m))

I |U| =
∏m

k=1|N (z(k))| ∼ dmmax

I for m = 4, dmax = 4, have |U| = 256

I not intractable for this problem

I W = 2V

I |W| = 2|V|

I for |V| = 252, have |W| ≈ 10188

I cannot compute expectation using summation

5



Approximate dynamic programming

I in state x at time t, choose action

ut(x) ∈ argmin
u∈Ũt(x)

(
1

N

N∑
k=1

(gt(x, u, w
(k)) + ṽt+1(ft(x, u, w

(k))))

)

I computation performed on-line

I look one step into the future

I will consider multi-step lookahead policies later in the class

I w(k) are independent realizations of wt

I three approximations

I approximate value function ṽt+1

I subset of actions Ũt(x)
I Monte Carlo approximation of expectation

I choosing ṽt+1 and Ũt(x) is an art rather than a science

I may not need all three approximations for some problems

6



Approximate value functions

I used when it is impossible to store/compute the optimal value function

I policy may no longer be optimal

I lower bound on optimal cost used to estimate suboptimality

I the achieved cost is a continuous function of the value function

I if approximate value function is close to optimal value function,
then achieved cost is close to optimal cost

I can also approximate Q-function instead of value function

I a good approximate value function allows us to approximate future costs

I accounting for future costs is key to dynamic programming

I additive constants do not affect the policy

7



Methods for designing approximate value functions

I heuristic formulas

I optimization

I solve relaxations of the HJB equation

I not the focus of this class

I an algorithm to compute the approximate value of a state

I often DP for a simpler problem

8



Approximate action sets

I heuristic for identifying a few actions that are likely to produce good results

I do not need to determine the entire approximate action set in advance

I can keep trying actions until you find an acceptable one

I can use approximate values to determine which actions to try next
(e.g., try something similar to an action you know is good)

9



Approximating expectation

I simplest method is a Monte Carlo sum

I can do better than Monte Carlo sum

I each particle in the simulation tells us about the value of many states

I principle behind reinforcement learning

I more on this later in the class

10



Approximate value function for vehicle routing: heuristic formula

I if d(z(k), bk) > T − (t+ 1) for some k, then ṽt+1(z
(1), . . . , z(m), S) = −∞

I impossible to get to destination by time horizon

I otherwise,

ṽt+1(z
(1), . . . , z(m), S) =

1

|V| − |S|
∑
i/∈S

ri(1− pi)
1+mink d(z(k),i)

I ri(1− pi)
1+mink d(z(k),i) is expected reward if send nearest vehicle to i

I {z(1), . . . , z(m)} defines a Voronoi decomposition of the plane

I imagine sending a vehicle to every reward in the Voronoi cell

I ignores fact that each vehicle can only be sent to one reward

I factor of 1
|V|−|S| is a partial correction

11



Alternative approximate value function for vehicle routing: algorithm

I problem easy for single vehicle if rewards can be collected multiple times

I fix an order for the vehicles: k1, . . . , km

I for l = 1, . . . ,m

I solve the easy problem for vehicle kl

I remove the rewards collected by vehicle kl

I ṽt+1 is total reward collected by all vehicles

12



A greedy algorithm

we will compare the ADP algorithm to a simple greedy algorithm

I if d(z
(k)
t , bk) ≥ T − t, head straight to destination

I otherwise, head to nearest reward

I simple heuristic with many flaws

I may send multiple vehicle to same reward, wasting effort

I ignore distant, valuable reward to collect close, cheap rewards

13



Comparison of ADP and greedy algorithms

I mean reward of ADP algorithm: 329.27

I mean reward of greedy algorithm: 108.95

14


