EE365: Approximate Dynamic Programming

Vehicle routing problem

- fleet of m vehicles: $1, \ldots, m$
- transportation network modeled as graph with vertex set \mathcal{V}
- vehicle k starts at a given $a_{k} \in \mathcal{V}$ at time 0 , must end at a given $b_{k} \in \mathcal{V}$ at time T
- reward $r_{i} \geq 0$ for visiting vertex i
- each reward can only be earned once
- no repeat reward if a vehicle visits i multiple times
- no repeat reward if multiple vehicles visit i
- after each time period, reward at i disappears with probability p_{i}

Dynamic programming for vehicle routing problem

- state: $x_{t}=\left(z_{t}^{(1)}, \ldots, z_{t}^{(m)}, S_{t}\right)$
- $z_{t}^{(k)} \in \mathcal{V}$: location of vehicle k at time t
- $S_{t} \subseteq \mathcal{V}$: nodes whose rewards have been removed (because visited or randomly removed)
- initial state: $\left(a_{1}, \ldots, a_{m}, \emptyset\right)$
- disturbance: w_{t}, locations of randomly-removed rewards
- dynamics:
- $z_{t+1}=u_{t}$
- $S_{t+1}=S_{t} \cup\left\{z_{t}^{(1)}, \ldots, z_{t}^{(m)}\right\} \cup w_{t}$
- stage cost: $g(z, S)=\sum\left\{r_{i} \mid i \in\left\{z^{(1)}, \ldots, z^{(m)}\right\}, i \notin S, i \in \mathcal{V}\right\}$
- terminal cost: $g_{T}(z, S)= \begin{cases}g(z, S) & z^{(1)}=b_{1}, \ldots, z^{(m)}=b_{m} \\ -\infty & \text { otherwise }\end{cases}$

Complexity of dynamic programming

- $v_{T}^{\star}(x)=g_{T}(x)$
- for $t=T-1, \ldots, 0 ; x \in \mathcal{X}$,

$$
v_{t}^{\star}(x)=\min _{u \in \mathcal{U}} \sum_{w \in \mathcal{W}}\left(g_{t}(x, u, w)+v_{t+1}^{\star}\left(f_{t}(x, u, w)\right)\right) \mathbf{P r o b}\left(w_{t}=w\right)
$$

- $O(T|\mathcal{X}||\mathcal{U}||\mathcal{W}|)$ operations
- may be intractable if any of \mathcal{X}, \mathcal{U} and \mathcal{W} is very large
- often intractable due to curse of dimensionality

Intractability of dynamic programming for vehicle routing

- $\mathcal{X}=\mathcal{V}^{m} \times 2^{\mathcal{V}}$
- $|\mathcal{X}|=|\mathcal{V}|^{m} 2^{|\mathcal{V}|}$
- for $|\mathcal{V}|=25^{2}, m=4$, have $|\mathcal{X}| \approx 10^{200}$
($\approx 10^{80}$ atoms in the observable universe)
- cannot even store value function
- $\mathcal{U}\left(z^{(1)}, \ldots, z^{(m)}\right)=\mathcal{N}\left(z^{(1)}\right) \times \cdots \times \mathcal{N}\left(z^{(m)}\right)$
- $|\mathcal{U}|=\prod_{k=1}^{m}\left|\mathcal{N}\left(z^{(k)}\right)\right| \sim d_{\max }^{m}$
- for $m=4, d_{\max }=4$, have $|\mathcal{U}|=256$
- not intractable for this problem
- $\mathcal{W}=2^{\mathcal{V}}$
- $|\mathcal{W}|=2^{|\mathcal{V}|}$
- for $|\mathcal{V}|=25^{2}$, have $|\mathcal{W}| \approx 10^{188}$
- cannot compute expectation using summation

Approximate dynamic programming

- in state x at time t, choose action

$$
u_{t}(x) \in \underset{u \in \tilde{\mathcal{U}}_{t}(x)}{\operatorname{argmin}}\left(\frac{1}{N} \sum_{k=1}^{N}\left(g_{t}\left(x, u, w^{(k)}\right)+\tilde{v}_{t+1}\left(f_{t}\left(x, u, w^{(k)}\right)\right)\right)\right)
$$

- computation performed on-line
- look one step into the future
- will consider multi-step lookahead policies later in the class
- $w^{(k)}$ are independent realizations of w_{t}
- three approximations
- approximate value function \tilde{v}_{t+1}
- subset of actions $\tilde{\mathcal{U}}_{t}(x)$
- Monte Carlo approximation of expectation
- choosing \tilde{v}_{t+1} and $\tilde{\mathcal{U}}_{t}(x)$ is an art rather than a science
- may not need all three approximations for some problems

Approximate value functions

- used when it is impossible to store/compute the optimal value function
- policy may no longer be optimal
- lower bound on optimal cost used to estimate suboptimality
- the achieved cost is a continuous function of the value function
- if approximate value function is close to optimal value function, then achieved cost is close to optimal cost
- can also approximate Q-function instead of value function
- a good approximate value function allows us to approximate future costs
- accounting for future costs is key to dynamic programming
- additive constants do not affect the policy

Methods for designing approximate value functions

- heuristic formulas
- optimization
- solve relaxations of the HJB equation
- not the focus of this class
- an algorithm to compute the approximate value of a state
- often DP for a simpler problem

Approximate action sets

- heuristic for identifying a few actions that are likely to produce good results
- do not need to determine the entire approximate action set in advance
- can keep trying actions until you find an acceptable one
- can use approximate values to determine which actions to try next (e.g., try something similar to an action you know is good)

Approximating expectation

- simplest method is a Monte Carlo sum
- can do better than Monte Carlo sum
- each particle in the simulation tells us about the value of many states
- principle behind reinforcement learning
- more on this later in the class

Approximate value function for vehicle routing: heuristic formula

- if $d\left(z^{(k)}, b_{k}\right)>T-(t+1)$ for some k, then $\tilde{v}_{t+1}\left(z^{(1)}, \ldots, z^{(m)}, S\right)=-\infty$
- impossible to get to destination by time horizon
- otherwise,

$$
\tilde{v}_{t+1}\left(z^{(1)}, \ldots, z^{(m)}, S\right)=\frac{1}{|\mathcal{V}|-|S|} \sum_{i \notin S} r_{i}\left(1-p_{i}\right)^{1+\min _{k} d\left(z^{(k)}, i\right)}
$$

- $r_{i}\left(1-p_{i}\right)^{1+\min _{k} d\left(z^{(k)}, i\right)}$ is expected reward if send nearest vehicle to i
- $\left\{z^{(1)}, \ldots, z^{(m)}\right\}$ defines a Voronoi decomposition of the plane
- imagine sending a vehicle to every reward in the Voronoi cell
- ignores fact that each vehicle can only be sent to one reward
- factor of $\frac{1}{|\mathcal{V}|-|S|}$ is a partial correction

Alternative approximate value function for vehicle routing: algorithm

- problem easy for single vehicle if rewards can be collected multiple times
- fix an order for the vehicles: k_{1}, \ldots, k_{m}
- for $l=1, \ldots, m$
- solve the easy problem for vehicle k_{l}
- remove the rewards collected by vehicle k_{l}
- \tilde{v}_{t+1} is total reward collected by all vehicles

A greedy algorithm

we will compare the ADP algorithm to a simple greedy algorithm

- if $d\left(z_{t}^{(k)}, b_{k}\right) \geq T-t$, head straight to destination
- otherwise, head to nearest reward
- simple heuristic with many flaws
- may send multiple vehicle to same reward, wasting effort
- ignore distant, valuable reward to collect close, cheap rewards

Comparison of ADP and greedy algorithms

- mean reward of ADP algorithm: 329.27
- mean reward of greedy algorithm: 108.95

