EE365: Approximate Dynamic Programming

Vehicle routing problem

» fleet of m vehicles: 1,...,m
» transportation network modeled as graph with vertex set V

» vehicle k starts at a given a; € V at time 0,
must end at a given by € V at time T

» reward r; > 0 for visiting vertex ¢

» each reward can only be earned once

» no repeat reward if a vehicle visits ¢ multiple times
» no repeat reward if multiple vehicles visit 4

» after each time period, reward at ¢ disappears with probability p;

Dynamic programming for vehicle routing problem

» state: z; = (21", ..., 2™, S)

z,gk) € V: location of vehicle k at time ¢

» S: C V: nodes whose rewards have been removed (because visited or
randomly removed)

» initial state: (a1,...,am,0)
» disturbance: wy, locations of randomly-removed rewards
» dynamics:
> Zi41 = Ut
Sie1 =S U {z" MU
> St cU{z 2 Uy
» stage cost: g(z,S) Z{m lie{zM,... 2™} igSieV}

9(z,8) 2P =by,..., 2™ =b,,

» terminal cost: gr(z,S) = .
—00 otherwise

Complexity of dynamic programming

> vp(z) = gr(z)

» fort=T-1,...,0,x € X,

vy () = min (ge(z, uy w) + vip1 (fe(z, u,w))) Prob(w: = w)

» O(T|X||U||W)|) operations

» may be intractable if any of X', U and W is very large

» often intractable due to curse of dimensionality

Intractability of dynamic programming for vehicle routing

> X =V x2Y

> X = Vel

» for [V| = 25%, m = 4, have |X| ~ 10?%°
(= 10%° atoms in the observable universe)

» cannot even store value function
> UCED 2 = N (W) x - x V(™)
> U] =TI NV W)~ i
» for m =4, dmax = 4, have |U| = 256
» not intractable for this problem
» W=2V
» (W) =2V
» for |V| = 252, have [W| ~ 10'%®

» cannot compute expectation using summation

Approximate dynamic programming

» in state x at time ¢, choose action

N

. 1 -

uy(x) € argmin (N S (e, w™®) + vt+1(fz(fv,u,w(k>)))>
u€Uy (z) k=1

» computation performed on-line

» look one step into the future

» will consider multi-step lookahead policies later in the class
» w® are independent realizations of w;
» three approximations

» approximate value function ¥4
» subset of actions U (x)

» Monte Carlo approximation of expectation
» choosing ©;11 and Uy () is an art rather than a science

» may not need all three approximations for some problems

Approximate value functions

» used when it is impossible to store/compute the optimal value function

v

policy may no longer be optimal
» lower bound on optimal cost used to estimate suboptimality
» the achieved cost is a continuous function of the value function

» if approximate value function is close to optimal value function,
then achieved cost is close to optimal cost

v

can also approximate @Q-function instead of value function
» a good approximate value function allows us to approximate future costs

» accounting for future costs is key to dynamic programming

» additive constants do not affect the policy

Methods for designing approximate value functions

» heuristic formulas
» optimization

» solve relaxations of the HJB equation

» not the focus of this class
» an algorithm to compute the approximate value of a state

» often DP for a simpler problem

Approximate action sets

» heuristic for identifying a few actions that are likely to produce good results
» do not need to determine the entire approximate action set in advance

» can keep trying actions until you find an acceptable one

» can use approximate values to determine which actions to try next
(e.g., try something similar to an action you know is good)

Approximating expectation

» simplest method is a Monte Carlo sum
» can do better than Monte Carlo sum

» each particle in the simulation tells us about the value of many states
» principle behind reinforcement learning

» more on this later in the class

10

Approximate value function for vehicle routing: heuristic formula

» if d(zM,by) > T — (t 4 1) for some k, then #41(2V), ..., 2(™ §) = —c0

» impossible to get to destination by time horizon
» otherwise,

) m min (k) 4
w+1(z(1),... (m) ,S) = |V| 5] - ZT’ —pi) 1+ k d(21%))

> (1 — p;)tTmine (=) g expected reward if send nearest vehicle to ¢
» {z(M, ..., 2(™} defines a Voronoi decomposition of the plane
» imagine sending a vehicle to every reward in the Voronoi cell
ignores fact that each vehicle can only be sent to one reward

» factor of \V\lﬁ is a partial correction

11

Alternative approximate value function for vehicle routing: algorithm

» problem easy for single vehicle if rewards can be collected multiple times
» fix an order for the vehicles: k1,...,kn
» forl=1,....,m

» solve the easy problem for vehicle k;

» remove the rewards collected by vehicle k;

» U:y1 is total reward collected by all vehicles

12

A greedy algorithm

we will compare the ADP algorithm to a simple greedy algorithm
> if d(2{"),by) > T — t, head straight to destination
» otherwise, head to nearest reward
» simple heuristic with many flaws

» may send multiple vehicle to same reward, wasting effort

» ignore distant, valuable reward to collect close, cheap rewards

13

Comparison of ADP and greedy algorithms

» mean reward of ADP algorithm: 329.27

» mean reward of greedy algorithm: 108.95

ADP policy

greedy policy

0.5
0.4
0.3
0.2

relative frequency histograms

0 200 400 600 800 1000

1200
0 200 400 600 800 1000 1200
reward

14

