
EE365: Informed Search
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vs = 0
vi =∞ for all i 6= s
F = {s}
while F 6= ∅

// extract vertex ii = argmin
i∈F

vi

F = F \ {i}
// found targetif i ∈ T terminate

for j ∈ Ni

if vj > vi + gij
vj = vi + gij
F = F ∪ {j}

Dijkstra’s algorithm

I explores V closest first

I stops upon reaching the target set

I needs dist(i, T ) ≥ 0 for all i
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vs = 0
vi =∞ for all i 6= s
F = {s}
while F 6= ∅

// modified extraction rulei = argmin
i∈F

vi + hi

F = F \ {i}
// found targetif i ∈ T terminate

for j ∈ Ni

if vj > vi + gij
vj = vi + gij
F = F ∪ {j}

A? algorithm

I hi is an estimate of the distance from i to the target dist(i, T )

I h is called the heuristic function

I idea is to guide the search to look first in directions suggested by the heuristic
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Informed search

I h is the heuristic function

I hi is an estimate of the optimal cost to go from i to the target

I search first in directions with smallest estimated total cost

I a good choice of h reduces the number of vertices explored by the search

I and reduces the number of steps before termination

I called informed search

I correspondingly, shortest path algorithms without heuristics are called unin-
formed search
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Reduction to Dijkstra’s algorithm

I construct transformed graph, with weights ĝij = gij + hj − hi

I applying Dijkstra to the transformed graph is the same as applying A? to the
original graph
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Reduction to Dijkstra’s algorithm

for any path u→ w → x→ . . .→ y → z

ĝ(u z) = g(u z) + hz − hu

because

ĝ(u z) = guw + hw − hu + gwx + hx − hw + · · ·+ gyz + hz − hy

I we’ll see that A? finds the shortest path in the transformed graph (Dijkstra)

I with target vertex t, algorithm A? therefore minimizes g(s t) + ht
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Reduction to Dijkstra’s algorithm

I let v̂ be the distance estimate in Dijkstra’s algorithm

I let v be the distance estimate in A?

I then the algorithms are the same, with v̂i = vi + hi − hs, because

I v̂j − v̂i + ĝij = vj − vi + gij so the same edges are relaxed

I argmin
i

v̂i = argmin
i

vi + hi so the same vertices are extracted
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Admissible heuristics

the function h is called admissible if, for all i ∈ V,

hi ≤ dist(i, T )

I if h is admissible, then

d̂ist(i, T ) = min
j∈T

d̂ist(i, j)

= min
j∈T

(dist(i, j) + hj − hi)

= dist(i, T )− hi

≥ 0

I hence admissibility implies that d̂ist(i, T ) ≥ 0 for all i

I this is precisely the condition required by Dijkstra’s algorithm

I if h is admissible, then A? will terminate with a shortest path from s to T
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Consistent heuristics

the function h is called consistent if hx = 0 for all x ∈ T and for all i, j ∈ V,

gij + hj − hi ≥ 0

I a Bellman inequality

I also called a monotone heuristic

I hence, for any path, g(i j) ≥ hi − hj

I implies admissibility, since

dist(i, T ) = min
j∈T

dist(i, j)

≥ min
j∈T

(hi − hj)

= hi
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Consistent heuristics

I if h is consistent then the weights in the transformed graph are nonnegative

I with nonnegative weights, Dijkstra extracts each vertex once, and never re-
visits vertices

I hence A? never backtracks
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Constructing heuristics

I relax constraints on the allowed actions; gives an admissible heuristic

I pointwise maximum of admissible (consistent) heuristics is admissible (con-
sistent)
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Example: Two dimensional grid

I Estimate the distance to target through the Manhattan distance:

hu = |ux − tx|+ |uy − ty|

I Manhattan distance is a lower bound, since it assumes no obstacles

I in fact, it is a consistent heuristic

Left: Uninformed search h = 0,
N = 4066

Right: Heuristic search
N = 1277.
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Two dimensional maze

Problem: find shortest path in the following maze.

I Starting position is with cyan.

I target position with red.

I waypoints between squares are denoted with blue.
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Two dimensional maze

Problem: Find the shortest path between starting position and target.
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Waypoints graph

Waypoints between blocks and connectivity pattern.
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Two dimensional maze

I Using uninformed search h = 0, we essentially have to explore the whole
space before we find the shortest path.
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Two dimensional maze

I Manhattan Distance Estimate: ĥu = |ux − tx| + |uy − ty|. Essentially
assumes there are no obstacles (relaxes constraints).
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Two dimensional maze

I Waypoints Graph with Manhattan Distance Weights. Essentially assumes
there are no obstacles in going from one waypoint to the other.
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Two dimensional maze

I Waypoints Graph with Computed Pairwise Distance Weights. Essentially
assumes there are no obstacles in going from the point to the closest waypoint
and from the last waypoint to the target.
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Search strategies

I both Dijkstra and A? are guaranteed to find the optimal solution if it exists

I heuristics change the sequence in which vertices are searched

I A? heavily used in practice

I most common limitation is available memory

I further refinements possible to trade-off time/memory

20


