
EE365: Informed Search

1

vs = 0
vi =∞ for all i 6= s
F = {s}
while F 6= ∅

// extract vertex ii = argmin
i∈F

vi

F = F \ {i}
// found targetif i ∈ T terminate

for j ∈ Ni

if vj > vi + gij
vj = vi + gij
F = F ∪ {j}

Dijkstra’s algorithm

I explores V closest first

I stops upon reaching the target set

I needs dist(i, T) ≥ 0 for all i

2

vs = 0
vi =∞ for all i 6= s
F = {s}
while F 6= ∅

// modified extraction rulei = argmin
i∈F

vi + hi

F = F \ {i}
// found targetif i ∈ T terminate

for j ∈ Ni

if vj > vi + gij
vj = vi + gij
F = F ∪ {j}

A? algorithm

I hi is an estimate of the distance from i to the target dist(i, T)

I h is called the heuristic function

I idea is to guide the search to look first in directions suggested by the heuristic

3

Informed search

I h is the heuristic function

I hi is an estimate of the optimal cost to go from i to the target

I search first in directions with smallest estimated total cost

I a good choice of h reduces the number of vertices explored by the search

I and reduces the number of steps before termination

I called informed search

I correspondingly, shortest path algorithms without heuristics are called unin-
formed search

4

Reduction to Dijkstra’s algorithm

I construct transformed graph, with weights ĝij = gij + hj − hi

I applying Dijkstra to the transformed graph is the same as applying A? to the
original graph

5

Reduction to Dijkstra’s algorithm

for any path u→ w → x→ . . .→ y → z

ĝ(u z) = g(u z) + hz − hu

because

ĝ(u z) = guw + hw − hu + gwx + hx − hw + · · ·+ gyz + hz − hy

I we’ll see that A? finds the shortest path in the transformed graph (Dijkstra)

I with target vertex t, algorithm A? therefore minimizes g(s t) + ht

6

Reduction to Dijkstra’s algorithm

I let v̂ be the distance estimate in Dijkstra’s algorithm

I let v be the distance estimate in A?

I then the algorithms are the same, with v̂i = vi + hi − hs, because

I v̂j − v̂i + ĝij = vj − vi + gij so the same edges are relaxed

I argmin
i

v̂i = argmin
i

vi + hi so the same vertices are extracted

7

Admissible heuristics

the function h is called admissible if, for all i ∈ V,

hi ≤ dist(i, T)

I if h is admissible, then

d̂ist(i, T) = min
j∈T

d̂ist(i, j)

= min
j∈T

(dist(i, j) + hj − hi)

= dist(i, T)− hi

≥ 0

I hence admissibility implies that d̂ist(i, T) ≥ 0 for all i

I this is precisely the condition required by Dijkstra’s algorithm

I if h is admissible, then A? will terminate with a shortest path from s to T

8

Consistent heuristics

the function h is called consistent if hx = 0 for all x ∈ T and for all i, j ∈ V,

gij + hj − hi ≥ 0

I a Bellman inequality

I also called a monotone heuristic

I hence, for any path, g(i j) ≥ hi − hj

I implies admissibility, since

dist(i, T) = min
j∈T

dist(i, j)

≥ min
j∈T

(hi − hj)

= hi

9

Consistent heuristics

I if h is consistent then the weights in the transformed graph are nonnegative

I with nonnegative weights, Dijkstra extracts each vertex once, and never re-
visits vertices

I hence A? never backtracks

10

Constructing heuristics

I relax constraints on the allowed actions; gives an admissible heuristic

I pointwise maximum of admissible (consistent) heuristics is admissible (con-
sistent)

11

Example: Two dimensional grid

I Estimate the distance to target through the Manhattan distance:

hu = |ux − tx|+ |uy − ty|

I Manhattan distance is a lower bound, since it assumes no obstacles

I in fact, it is a consistent heuristic

Left: Uninformed search h = 0,
N = 4066

Right: Heuristic search
N = 1277.

12

Two dimensional maze

Problem: find shortest path in the following maze.

I Starting position is with cyan.

I target position with red.

I waypoints between squares are denoted with blue.

13

Two dimensional maze

Problem: Find the shortest path between starting position and target.

14

Waypoints graph

Waypoints between blocks and connectivity pattern.

15

Two dimensional maze

I Using uninformed search h = 0, we essentially have to explore the whole
space before we find the shortest path.

16

Two dimensional maze

I Manhattan Distance Estimate: ĥu = |ux − tx| + |uy − ty|. Essentially
assumes there are no obstacles (relaxes constraints).

17

Two dimensional maze

I Waypoints Graph with Manhattan Distance Weights. Essentially assumes
there are no obstacles in going from one waypoint to the other.

18

Two dimensional maze

I Waypoints Graph with Computed Pairwise Distance Weights. Essentially
assumes there are no obstacles in going from the point to the closest waypoint
and from the last waypoint to the target.

19

Search strategies

I both Dijkstra and A? are guaranteed to find the optimal solution if it exists

I heuristics change the sequence in which vertices are searched

I A? heavily used in practice

I most common limitation is available memory

I further refinements possible to trade-off time/memory

20

