EE365: Informed Search

## Dijkstra's algorithm

$$
\begin{aligned}
& v_{s}=0 \\
& v_{i}=\infty \text { for all } i \neq s \\
& F=\{s\} \\
& \text { while } F \neq \emptyset \\
& \quad i=\underset{i \in F}{\operatorname{argmin}} v_{i} \\
& \quad F=F \backslash\{i\} \\
& \text { if } i \in \mathcal{T} \text { terminate } \\
& \quad \text { for } j \in \mathcal{N}_{i} \\
& \quad \text { if } v_{j}>v_{i}+g_{i j} \\
& \qquad \begin{array}{l}
v_{j} \\
F \\
F \\
\quad F \\
\quad=F \cup\{j\}
\end{array}
\end{aligned}
$$

- explores $\mathcal{V}$ closest first
- stops upon reaching the target set
- needs $\operatorname{dist}(i, \mathcal{T}) \geq 0$ for all $i$


## $A^{\star}$ algorithm

$$
\begin{array}{ll}
v_{s}=0 & \\
v_{i}=\infty \text { for all } i \neq s & \\
F=\{s\} & \\
\text { while } F \neq \emptyset & \\
\quad i=\underset{i \in F}{\operatorname{argmin}} v_{i}+h_{i} & \\
\quad F=F \backslash\{i\} & \\
\quad \text { if } i \in \mathcal{T} \text { terminate } & \\
\text { for } j \in \mathcal{N}_{i} & \\
\quad \text { if } v_{j}>v_{i}+g_{i j} & \\
\quad v_{j}=v_{i}+g_{i j} & \\
\quad F=F \cup\{j\} &
\end{array}
$$

- $h_{i}$ is an estimate of the distance from $i$ to the $\operatorname{target} \operatorname{dist}(i, \mathcal{T})$
- $h$ is called the heuristic function
- idea is to guide the search to look first in directions suggested by the heuristic


## Informed search

- $h$ is the heuristic function
- $h_{i}$ is an estimate of the optimal cost to go from $i$ to the target
- search first in directions with smallest estimated total cost
- a good choice of $h$ reduces the number of vertices explored by the search
- and reduces the number of steps before termination
- called informed search
- correspondingly, shortest path algorithms without heuristics are called uninformed search


## Reduction to Dijkstra's algorithm

- construct transformed graph, with weights $\hat{g}_{i j}=g_{i j}+h_{j}-h_{i}$
- applying Dijkstra to the transformed graph is the same as applying $A^{\star}$ to the original graph


## Reduction to Dijkstra's algorithm

for any path $u \rightarrow w \rightarrow x \rightarrow \ldots \rightarrow y \rightarrow z$

$$
\hat{g}(u \rightsquigarrow z)=g(u \rightsquigarrow z)+h_{z}-h_{u}
$$

because

$$
\hat{g}(u \rightsquigarrow z)=g_{u w}+h_{w}-h_{u}+g_{w x}+h_{x}-h_{w}+\cdots+g_{y z}+h_{z}-h_{y}
$$

- we'll see that $A^{\star}$ finds the shortest path in the transformed graph (Dijkstra)
- with target vertex $t$, algorithm $A^{\star}$ therefore minimizes $g(s \rightsquigarrow t)+h_{t}$


## Reduction to Dijkstra's algorithm

- let $\hat{v}$ be the distance estimate in Dijkstra's algorithm
- let $v$ be the distance estimate in $A^{\star}$
- then the algorithms are the same, with $\hat{v}_{i}=v_{i}+h_{i}-h_{s}$, because
- $\hat{v}_{j}-\hat{v}_{i}+\hat{g}_{i j}=v_{j}-v_{i}+g_{i j}$ so the same edges are relaxed
- $\underset{i}{\operatorname{argmin}} \hat{v}_{i}=\underset{i}{\operatorname{argmin}} v_{i}+h_{i}$ so the same vertices are extracted


## Admissible heuristics

the function $h$ is called admissible if, for all $i \in \mathcal{V}$,

$$
h_{i} \leq \operatorname{dist}(i, \mathcal{T})
$$

- if $h$ is admissible, then

$$
\begin{aligned}
\widehat{\operatorname{dist}}(i, \mathcal{T}) & =\min _{j \in \mathcal{T}} \widehat{\operatorname{dist}}(i, j) \\
& =\min _{j \in \mathcal{T}}\left(\boldsymbol{\operatorname { d i s t }}(i, j)+h_{j}-h_{i}\right) \\
& =\operatorname{dist}(i, \mathcal{T})-h_{i} \\
& \geq 0
\end{aligned}
$$

- hence admissibility implies that $\widehat{\operatorname{dist}}(i, \mathcal{T}) \geq 0$ for all $i$
- this is precisely the condition required by Dijkstra's algorithm
- if $h$ is admissible, then $A^{\star}$ will terminate with a shortest path from $s$ to $\mathcal{T}$


## Consistent heuristics

the function $h$ is called consistent if $h_{x}=0$ for all $x \in \mathcal{T}$ and for all $i, j \in \mathcal{V}$,

$$
g_{i j}+h_{j}-h_{i} \geq 0
$$

- a Bellman inequality
- also called a monotone heuristic
- hence, for any path, $g(i \rightsquigarrow j) \geq h_{i}-h_{j}$
- implies admissibility, since

$$
\begin{aligned}
\operatorname{dist}(i, \mathcal{T}) & =\min _{j \in \mathcal{T}} \operatorname{dist}(i, j) \\
& \geq \min _{j \in \mathcal{T}}\left(h_{i}-h_{j}\right) \\
& =h_{i}
\end{aligned}
$$

## Consistent heuristics

- if $h$ is consistent then the weights in the transformed graph are nonnegative
- with nonnegative weights, Dijkstra extracts each vertex once, and never revisits vertices
- hence $A^{\star}$ never backtracks


## Constructing heuristics

- relax constraints on the allowed actions; gives an admissible heuristic
- pointwise maximum of admissible (consistent) heuristics is admissible (consistent)


## Example: Two dimensional grid

- Estimate the distance to target through the Manhattan distance:

$$
h_{u}=\left|u_{x}-t_{x}\right|+\left|u_{y}-t_{y}\right|
$$

- Manhattan distance is a lower bound, since it assumes no obstacles
- in fact, it is a consistent heuristic

Left: Uninformed search $h=0$,

$$
N=4066
$$



Right: Heuristic search $N=1277$.


## Two dimensional maze

Problem: find shortest path in the following maze.

- Starting position is with cyan.
- target position with red.
- waypoints between squares are denoted with blue.


## Two dimensional maze

Problem: Find the shortest path between starting position and target.

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Waypoints graph

Waypoints between blocks and connectivity pattern.

State Space and super-imposed Map

| KH |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Two dimensional maze

- Using uninformed search $h=0$, we essentially have to explore the whole space before we find the shortest path.



## Two dimensional maze

- Manhattan Distance Estimate: $\hat{h}_{u}=\left|u_{x}-t_{x}\right|+\left|u_{y}-t_{y}\right|$. Essentially assumes there are no obstacles (relaxes constraints).
$A^{*}$ with Manhattan Heuristic $\mathrm{N}=2524 \mathrm{~d}^{*}=202$



## Two dimensional maze

- Waypoints Graph with Manhattan Distance Weights. Essentially assumes there are no obstacles in going from one waypoint to the other.

A* with Map Sketch Heuristic N=2043 d*=202


## Two dimensional maze

- Waypoints Graph with Computed Pairwise Distance Weights. Essentially assumes there are no obstacles in going from the point to the closest waypoint and from the last waypoint to the target.
$\mathrm{A}^{*}$ with Map Exact Heuristic $\mathrm{N}=492 \mathrm{~d}^{*}=202$



## Search strategies

- both Dijkstra and $A^{\star}$ are guaranteed to find the optimal solution if it exists
- heuristics change the sequence in which vertices are searched
- $A^{\star}$ heavily used in practice
- most common limitation is available memory
- further refinements possible to trade-off time/memory

