EE365: The Bellman-Ford Algorithm

Shortest path problems

- given weighted graph and a destination vertex
- find lowest cost path from every vertex to destination

Dynamic programming principle

- let $g_{i j}=$ cost of edge $i \rightarrow j \quad$ (∞ if no edge)
- let $v_{i}=$ cost of shortest path from i to destination; it must satisfy

$$
v_{i}=\min _{j}\left(g_{i j}+v_{j}\right)
$$

Dynamic programming principle

$$
v_{i}=\min _{j}\left(g_{i j}+v_{j}\right)
$$

- starting at vertex i
- $g_{i j}$ is cost of next step

- shortest path minimizes sum of
- cost for next step
- shortest path from where you land

Dynamic programming principle

13

- once we know v, we also know the optimal path from all initial vertices
- from vertex i, move to the minimizer j

Bellman-Ford algorithm

- let $v_{i}^{0}= \begin{cases}0 & \text { if } i=\text { destination } \\ \infty & \text { otherwise }\end{cases}$
- for $k=0, \ldots, n-1$

$$
v_{i}^{k+1}=\min \left\{v_{i}^{k}, \min _{j}\left(g_{i j}+v_{j}^{k}\right)\right\}
$$

- v_{i}^{k} is lowest cost path from i to destination in k steps or fewer
- if $v^{n} \neq v^{n-1}$ then graph has negative cycle, and cost may be made $-\infty$
- stop early if $v^{k+1}=v^{k}$
- n vertices, m edges, runs in $O(m n)$ time

Bellman-Ford algorithm

$$
v_{i}^{k+1}=\min \left\{v_{i}^{k}, \min _{j}\left(g_{i j}+v_{j}^{k}\right)\right\}
$$

$$
v^{0}=\left[\begin{array}{c}
\infty \\
\infty \\
\infty \\
\infty \\
0 \\
\infty \\
\infty
\end{array}\right] \quad v^{1}=\left[\begin{array}{c}
\infty \\
\infty \\
10 \\
6 \\
0 \\
\infty \\
8
\end{array}\right] \quad v^{2}=\left[\begin{array}{c}
13 \\
20 \\
9 \\
6 \\
0 \\
14 \\
8
\end{array}\right] \quad v^{3}=\left[\begin{array}{c}
12 \\
19 \\
9 \\
6 \\
0 \\
13 \\
8
\end{array}\right]
$$

Dynamic programming

- breaks up large problem into nested subproblems
- works backward in time (for deterministic problems, can also work forwards)
- stores the solution of subproblems in the value function, to allow reuse at many states

Shortest path problems

- Dijkstra's algorithm is similar but faster $(O(m+n \log n))$, and requires nonnegative weights
- both BF and Dijkstra give shortest path from every vertex to destination
- other algorithms, such as A^{\star}, find shortest path between two vertices

