EE365: The Bellman-Ford Algorithm

Shortest path problems

» given weighted graph and a destination vertex

» find lowest cost path from every vertex to destination

Dynamic programming principle

» let g;; = cost of edge i — j (o0 if no edge)

» let v; = cost of shortest path from i to destination; it must satisfy

v, = mjin(gij + ;)

Dynamic programming principle

vi = min(gi; +v;)

» starting at vertex ¢

» gi; is cost of next step
» shortest path minimizes sum of

» cost for next step

» shortest path from where you land

Dynamic programming principle

vi = min(gi; +v;)

» once we know v, we also know the optimal path from all initial vertices

» from vertex i, move to the minimizer j

Bellman-Ford algorithm

> let v, =

o _ JO if i = destination
oo otherwise

» fork=0,....,n—1

» vt = min{v, min(gi; +)}
J

» vF is lowest cost path from i to destination in k steps or fewer

» if v™ # v™ ! then graph has negative cycle, and cost may be made —oo

k+1 _ Kk

» stop early if v v

» n vertices, m edges, runs in O(mn) time

Bellman-Ford algorithm

[00] [o0] 137 [12]

00 o) 20 19

%) 10 9 9

W' = |oo =16 =16 wW=16

0 0 0 0

00 o) 14 13
| 00| | 8] | 8] L 8]

Dynamic programming

» breaks up large problem into nested subproblems
» works backward in time (for deterministic problems, can also work forwards)

» stores the solution of subproblems in the value function, to allow reuse at
many states

Shortest path problems

» Dijkstra’s algorithm is similar but faster (O(m + nlogn)), and requires non-
negative weights

» both BF and Dijkstra give shortest path from every vertex to destination

» other algorithms, such as A*, find shortest path between two vertices

