EE365: The Bellman-Ford Algorithm



Shortest path problems

» given weighted graph and a destination vertex

» find lowest cost path from every vertex to destination




Dynamic programming principle

» let g;; = cost of edge i — j (o0 if no edge)

» let v; = cost of shortest path from i to destination; it must satisfy

v, = mjin(gij + ;)




Dynamic programming principle

vi = min(gi; +v;)

» starting at vertex ¢

» gi; is cost of next step
» shortest path minimizes sum of

» cost for next step

» shortest path from where you land



Dynamic programming principle

vi = min(gi; +v;)

» once we know v, we also know the optimal path from all initial vertices

» from vertex i, move to the minimizer j



Bellman-Ford algorithm

> let v, =

o _ JO if i = destination
oo otherwise

» fork=0,....,n—1

» vt = min{v, min(gi; + )}
J

» vF is lowest cost path from i to destination in k steps or fewer

» if v™ # v™ ! then graph has negative cycle, and cost may be made —oo

k+1 _ Kk

» stop early if v v

» n vertices, m edges, runs in O(mn) time



Bellman-Ford algorithm
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Dynamic programming

» breaks up large problem into nested subproblems
» works backward in time (for deterministic problems, can also work forwards)

» stores the solution of subproblems in the value function, to allow reuse at
many states



Shortest path problems

» Dijkstra’s algorithm is similar but faster (O(m + nlogn)), and requires non-
negative weights

» both BF and Dijkstra give shortest path from every vertex to destination

» other algorithms, such as A*, find shortest path between two vertices



