EE365: Costs and Rewards

Costs and rewards

Value iteration

Costs and rewards

Costs and rewards in a Markov chain

- > associate costs (or rewards; more generally, just a function) with Markov chain x_0, \ldots, x_T
- ▶ $g_t : \mathcal{X} \to \mathbb{R}$ is the stage cost function
- ▶ at time t, we incur cost $g_t(x)$ for being in state x
- ▶ total cost for T time periods is (random variable) $\sum_{t=0}^{T} g_t(x_t)$
- expected stage cost is $\pi_t g_t$
- expected total cost is (number)

$$J = \mathbf{E} \sum_{t=0}^{T} g_t(x_t) = \pi_0 g_0 + \dots + \pi_T g_T$$

Cost evaluation by distribution propagation

$$\blacktriangleright J = \pi_0 g_0 + \dots + \pi_T g_T$$

• evaluate π_t recursively using distribution propagation

▶ start with
$$J = \pi_0 g_0$$
, then for $t = 1, ..., T$,

 $\pi_t = \pi_{t-1}P$ // propagate distribution forward in time $J = J + \pi_t g_t$ // running sum of expected stage costs

• requires n^2T operations (less if P is sparse)

Value iteration

Value function

write \boldsymbol{J} as

$$J = \pi_0 g_0 + \dots + \pi_T g_T$$

= $\pi_0 g_0 + \dots + \pi_0 P^T g_T$
= $\pi_0 (\underbrace{g_0 + Pg_1 + \dots + P^T g_T}_{v_0})$
= $\pi_0 (g_0 + P(\underbrace{g_1 + Pg_2 + \dots + P^{T-1}g_T}_{v_1}))$
:
= $\pi_0 (g_0 + P(g_1 + \dots + P(g_{T-1} + P\underbrace{g_T}_{v_T})))$

Value function

define

$$v_t = g_t + Pg_{t+1} + \dots + P^{T-t}g_T, \quad t = 0, \dots, T$$

▶ $v_t : \mathcal{X} \to \mathbb{R}$ is value function at time t

▶
$$J = \pi_0 v_0$$
; more generally,

$$J = \sum_{t=0}^{s-1} \pi_t g_t + \pi_s v_s$$

- \blacktriangleright first term is expected cost over $t=0,\ldots,s-1$
- \blacktriangleright second term is expected cost over $t=s,\ldots,T$

Interpretation of value function

we have

$$(v_t)_i = \mathbf{E}\left(\sum_{\tau=t}^T g_{\tau}(x_{\tau}) \mid x_t = i\right)$$

 \blacktriangleright so v_t gives expected future cost starting from each state, at time t

 \blacktriangleright v_t summarizes future costs as a current cost

Recursion for value function

 \blacktriangleright from the definition of v_t we have $v_T=g_T$ and

$$v_{t-1} = g_{t-1} + Pv_t, \quad t = T, \dots, 1$$

- gives a *backward* recursion for computing v_T, \ldots, v_0
- ► called *value iteration*

Cost evaluation by value iteration

start with v_T = g_T, then for t = T,..., 1,
v_{t-1} = g_{t-1} + Pv_t // propagate value function backward in time
let J = π₀v₀

• requires n^2T operations (less if P is sparse)

> an alternative to distribution propagation, that we will need for control

Example: Random walk

 \blacktriangleright random walk on a 2-dimensional 30×30 grid, with square obstacle

outer boundaries are absorbing

Transition probabilities

2 different cases:

probability of staying at current state: 1/10

Example: Mean time to absorption

▶ Let *E* be the set of absorbing states, and

 $\tau = \min\{t > 0 \mid x_t \in E\}$

▶ for t = 0, ..., T assign costs

$$g_t(x) = \begin{cases} 0 & x \in E \\ 1 & \text{otherwise} \end{cases}$$

 $\blacktriangleright \text{ cost } J = \mathbf{E}\min(\tau, T)$

 \blacktriangleright gives mean time to absorption as $T \rightarrow \infty$

Example: Mean time to absorption

mean time to absorption as a function of initial state

Example: Mean time in each state

$$g_t(x) = \begin{cases} 1 & x = j \\ 0 & \text{otherwise} \end{cases}$$

▶ then J is the mean time spent in state j during time $t \in [0, T]$

Example: Mean time in each state

plot shows the mean time spent in non-absorbing states (initial state i = (12, 18))

