
EE365: Shortest Paths

Deterministic optimal control

The simplest shortest path algorithm

Dijkstra’s algorithm

1

Deterministic optimal control

2

Deterministic optimal control

minimize
T−1∑
t=0

gt(xt, ut) + gT (xT)

subject to xt+1 = ft(xt, ut), t = 0, . . . , T − 1

I variables are x1, . . . , xT , u0, . . . , uT−1. x0 is given

I just an optimization problem, with a trivial information pattern

I can extend to case when costs are random, when dynamics are deterministic

I useful way to formulate many general optimization problems (e.g., knapsack)

3

Equivalent shortest path problems

create the unrolled graph

I vertex set is V = X0 ∪ · · · ∪ XT ; if time-invariant, then V = X × {0, . . . , T}

I directed edges corresponding to ut from xt to xt+1 = ft(xt, ut)
if there are multiple edges, keep the lowest cost one

I edge weights are g(xt, ut)

I add additional target vertex z with an edge from each x ∈ XT with weight
gT (x)

I a sequence of actions is a path through the unrolled graph from x0 to z

I associated objective is total, weighted path length

4

X0 X1 XT−1 XT

Unrolled graph

vertex set is X0 ∪ · · · ∪ XT
5

X0 X1 XT−1 XT

Unrolled graph

directed edges, labeled by ut, from xt to xt+1 = ft(xt, ut)
6

X0 X1 XT−1 XT

Unrolled graph

a sequence of actions is a path through the unrolled graph
7

Dynamic programming

I dynamic programming is often too computationally expensive

I T |X ||U| operations

I the state space can be so large that we cannot store the value function v

I specify the system in code by a function that returns f(x, u) given x, u; called
an oracle or an implicit description

I for MPC, we are only interested in finding the best action to take given the
current state, not given any possible state (as given by DP)

8

The simplest shortest path algorithm

9

The simplest shortest path problem

I given weighted directed graph with vertices V and a source vertex s ∈ V

I find lowest cost path from source to every vertex

1

2

3

4

5

6

7

5

10

3

5
7

4

10

8

12

18

6

1

10

Problem description

I directed graph

I V is a finite set of vertices

I E is the set of directed edges i→ j

I for each i, Ni is the set of neighbors j such that i→ j is an edge

I gij is the cost of edge i→ j

I s is the source vertex

I T ⊂ V is the target set

I dist(s, i) is the cost of the minimum-cost path from s to i

I dist(s, T) = min
i∈T

dist(s, i)

11

Problems with value iteration

I we have seen (one form of) the Bellman-Ford algorithm

I it finds the shortest path from a vertex s to all vertices

I often we only want the shortest path from s to some target set T ⊂ V

I e.g., in the unrolled graph, V = X0 ∪ · · · ∪ XT , the source vertex is x0 ∈ X0

and the target set is T = {z}

12

vs = 0
vi =∞ for all i 6= s
while there is an edge i→ j such that vj > vi + gij

let i→ j be any such edge
vj = vi + gij

The simplest algorithm

I negative edge weights gij allowed

I each step is called edge relaxation

I requires storing the array v, which is the size of V

I finds the shortest path from source vertex s to all vertices

13

vs = 0
vi =∞ for all i 6= s
while there is an edge i→ j such that vj > vi + gij

let i→ j be any such edge
vj = vi + gij

The simplest algorithm

if the graph has no negative cycles, then the algorithm terminates, because

I by induction, at every step vi is either ∞ or the cost of some path s i

I these paths are always acyclic

I at every step, some vi decreases, and there are only finitely many paths

14

vs = 0
vi =∞ for all i 6= s
while there is an edge i→ j such that vj > vi + gij

let i→ j be any such edge
vj = vi + gij

The simplest algorithm

to show the algorithm terminates correctly, we will show that if there is no edge
such that vj > vi + gij , then vi = dist(s, i) for all i.

I suppose for a contradiction that vi 6= dist(s, i) but vj = vi+gij for all edges

I vi is the cost of some path s j → k i

I let j → k be the first edge along the path such that vk > dist(s, k)

I then vj = dist(s, j) and dist(s, k) ≥ vj + gjk, hence vk > vj + gjk

15

Properties of the simplest algorithm

I many well-known shortest path algorithms correspond to a particular choice
of which order to relax edges

I often very fast

I one can construct (pathological) examples where it is very slow

16

Dijkstra’s algorithm

17

vs = 0
vi =∞ for all i 6= s
F = {s}
while F 6= ∅

i = argmin
i∈F

vi // extract vertex i

F = F \ {i}
for j ∈ Ni

if vj > vi + gij
vj = vi + gij
F = F ∪ {j}

Dijkstra’s algorithm

I maintains a set F called the frontier or open set

I terminates with vi = dist(s, i) if graph has no negative cycles

I extracts the vertex with smallest vi, relaxes its outgoing edges

18

vs = 0
vi =∞ for all i 6= s
F = {s}
while F 6= ∅

i = argmin
i∈F

vi // extract vertex i

F = F \ {i}
for j ∈ Ni

if vj > vi + gij
vj = vi + gij
F = F ∪ {j}

Dijkstra’s algorithm

when all gij ≥ 0

I algorithm extracts vertices in order of distance from s

I each vertex is extracted at most once

I vi ≥ dist(s, i) always; equality when i is extracted

19

Interpretation of Dijkstra’s algorithm

I the algorithm may be thought of as a simulation of fluid flow

I imagine fluid traveling from the source vertex s, moving at speed 1

I gij is time for fluid to traverse edge i→ j

I set vi at neighbors of i to be the estimated time of arrival

I when fluid arrives at the next vertex, update the ETA of its neighbors

I some of these estimates may be too large, since the fluid might find shortcuts

20

vs = 0
vi =∞ for all i 6= s
F = {s}
E = ∅
while F 6= ∅

i = argmin
i∈F

vi // extract vertex i

F = F \ {i}
E = E ∪ {i}
for j ∈ Ni

if vj > vi + gij
vj = vi + gij
F = F ∪ {j}

Keeping track of visited vertices

I keeps track of E, the set of visited vertices, called the closed set

21

Inductive proof

When all weights gij ≥ 0, one can show by induction that, after each iteration

I there is some d such that

dist(s, i) ≤ d for all i ∈ E

dist(s, i) ≥ d for all i 6∈ E

I for all i, vi is the length of the shortest path s i fully contained in E

22

Termination

F = {s}; E = ∅
vs = 0
while F 6= ∅

// extract vertex ii = argmin
i∈F

vi

1 F = F \ {i}; E = E ∪ {i}
// found targetif i ∈ T terminate

for j ∈ Ni

if j /∈ F ∪ E
vj = vi + gij ; F = F ∪ {j}

else if j ∈ F
vj = min{vj , vi + gij}

else if vj > vi + gij
vj = vi + gij

// removing from E is optional2 E = E \ {j}; F = F ∪ {j}

23

Theorem

for any weights g such that dist(i, T) ≥ 0 for all i ∈ V

I the algorithm terminates

I on termination, vi = dist(s, i)

I condition allows negative edges, but no negative cycles

I since vi is the optimal cost, assigning parents as the algorithm progresses
gives a shortest path from s to i

I note that the only reason we need additional assumptions (compared with the
simplest algorithm) is that we are terminating the search early

24

The closed set

I maintaining the set E is optional

I the algorithm reduces to the previous one if we do not maintain E

I often E is stored as a hash table, along with the values of v in E

I if we remove from E (in line 2), then E and F are always disjoint

I then (depending on the implementation) it may be easier to implement addi-
tion of elements to E (in line 1)

25

Efficient implementation

I store F as a heap providing insert, delete, and extract-min operations

I since we terminate early, we do not need to store vi for every vertex i

I store v using a hash table, or keep values of v with vertices

I implement set E as a hash table

I neither hash tables nor heaps are available in Matlab

I in Matlab arrays are a workaround, but scale poorly

I if V is small, then we can mark vertices as open/closed in an array instead of
maintaining sets/lists

26

Example: Two dimensional grid

I frontier F shown in yellow

I closed set E shown in blue

27

