EE365: Shortest Paths

Deterministic optimal control

The simplest shortest path algorithm

Dijkstra's algorithm

Deterministic optimal control

Deterministic optimal control

$$\begin{array}{ll} \mbox{minimize} & \sum_{t=0}^{T-1} g_t(x_t,u_t) + g_T(x_T) \\ \mbox{subject to} & x_{t+1} = f_t(x_t,u_t), \quad t=0,\ldots,T-1 \end{array}$$

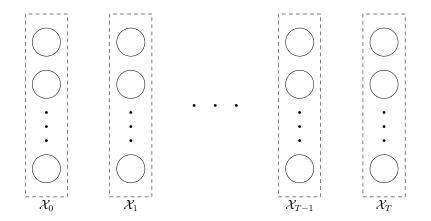
- ▶ variables are x_1, \ldots, x_T , u_0, \ldots, u_{T-1} . x_0 is given
- > just an optimization problem, with a trivial information pattern
- > can extend to case when costs are random, when dynamics are deterministic
- ▶ useful way to formulate many general optimization problems (*e.g.*, knapsack)

Equivalent shortest path problems

create the unrolled graph

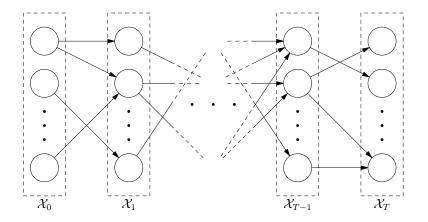
- vertex set is $\mathcal{V} = \mathcal{X}_0 \cup \cdots \cup \mathcal{X}_T$; if time-invariant, then $\mathcal{V} = \mathcal{X} \times \{0, \ldots, T\}$
- directed edges corresponding to u_t from x_t to $x_{t+1} = f_t(x_t, u_t)$ if there are multiple edges, keep the lowest cost one
- edge weights are $g(x_t, u_t)$
- ▶ add additional *target vertex* z with an edge from each $x \in X_T$ with weight $g_T(x)$
- \blacktriangleright a sequence of actions is a path through the unrolled graph from x_0 to z
- associated objective is total, weighted path length

Unrolled graph



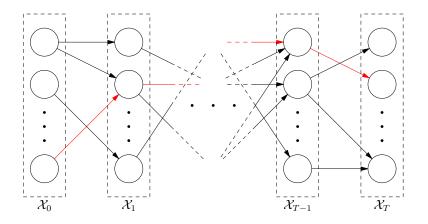
vertex set is $\mathcal{X}_0 \cup \cdots \cup \mathcal{X}_T$

Unrolled graph



directed edges, labeled by u_t , from x_t to $x_{t+1} = f_t(x_t, u_t)$

Unrolled graph



a sequence of actions is a path through the unrolled graph

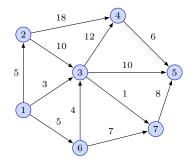
Dynamic programming

- dynamic programming is often too computationally expensive
- ▶ $T|\mathcal{X}||\mathcal{U}|$ operations
- \blacktriangleright the *state space* can be so *large* that we cannot store the value function v
- specify the system in code by a function that returns f(x, u) given x, u; called an *oracle* or an *implicit* description
- for MPC, we are only interested in finding the best action to take given the current state, not given any possible state (as given by DP)

The simplest shortest path algorithm

The simplest shortest path problem

- ▶ given weighted directed graph with vertices \mathcal{V} and a source vertex $s \in \mathcal{V}$
- ▶ find lowest cost path from source to *every vertex*



Problem description

- directed graph
- ▶ V is a finite set of vertices
- $\blacktriangleright~\mathcal{E}$ is the set of directed edges $i \to j$
- ▶ for each *i*, \mathcal{N}_i is the set of neighbors *j* such that $i \rightarrow j$ is an edge
- ▶ g_{ij} is the cost of edge $i \rightarrow j$
- ▶ s is the source vertex
- $\blacktriangleright \ \mathcal{T} \subset \mathcal{V}$ is the target set
- ▶ dist(s,i) is the cost of the minimum-cost path from s to i

•
$$\operatorname{dist}(s, \mathcal{T}) = \min_{i \in \mathcal{T}} \operatorname{dist}(s, i)$$

Problems with value iteration

- we have seen (one form of) the Bellman-Ford algorithm
- it finds the shortest path from a vertex s to all vertices
- \blacktriangleright often we only want the shortest path from s to some target set $\mathcal{T} \subset \mathcal{V}$
- ▶ e.g., in the unrolled graph, $\mathcal{V} = \mathcal{X}_0 \cup \cdots \cup \mathcal{X}_T$, the source vertex is $x_0 \in \mathcal{X}_0$ and the target set is $\mathcal{T} = \{z\}$

The simplest algorithm

 $\begin{array}{l} v_s = 0 \\ v_i = \infty \text{ for all } i \neq s \\ \text{while there is an edge } i \rightarrow j \text{ such that } v_j > v_i + g_{ij} \\ \text{let } i \rightarrow j \text{ be any such edge} \\ v_j = v_i + g_{ij} \end{array}$

- \blacktriangleright negative edge weights g_{ij} allowed
- each step is called edge relaxation
- requires storing the array v, which is the size of \mathcal{V}
- finds the shortest path from source vertex s to all vertices

The simplest algorithm

 $\begin{array}{l} v_s = 0 \\ v_i = \infty \text{ for all } i \neq s \\ \text{while there is an edge } i \rightarrow j \text{ such that } v_j > v_i + g_{ij} \\ \text{ let } i \rightarrow j \text{ be any such edge} \\ v_j = v_i + g_{ij} \end{array}$

if the graph has no negative cycles, then the algorithm terminates, because

- ▶ by induction, at every step v_i is either ∞ or the cost of some path $s \rightsquigarrow i$
- these paths are always acyclic
- \blacktriangleright at every step, some v_i decreases, and there are only finitely many paths

The simplest algorithm

 $\begin{array}{l} v_s = 0 \\ v_i = \infty \text{ for all } i \neq s \\ \text{while there is an edge } i \rightarrow j \text{ such that } v_j > v_i + g_{ij} \\ \text{ let } i \rightarrow j \text{ be any such edge} \\ v_j = v_i + g_{ij} \end{array}$

to show the algorithm terminates correctly, we will show that if there is no edge such that $v_i > v_i + g_{ij}$, then $v_i = \mathbf{dist}(s, i)$ for all *i*.

- ▶ suppose for a contradiction that $v_i \neq dist(s, i)$ but $v_j = v_i + g_{ij}$ for all edges
- v_i is the cost of some path $s \rightsquigarrow j \rightarrow k \rightsquigarrow i$
- ▶ let $j \to k$ be the first edge along the path such that $v_k > \mathbf{dist}(s,k)$
- ▶ then $v_j = \operatorname{dist}(s, j)$ and $\operatorname{dist}(s, k) \ge v_j + g_{jk}$, hence $v_k > v_j + g_{jk}$

Properties of the simplest algorithm

- many well-known shortest path algorithms correspond to a particular choice of which order to relax edges
- often very fast
- one can construct (pathological) examples where it is very slow

Dijkstra's algorithm

Dijkstra's algorithm

$$\begin{array}{l} v_s = 0 \\ v_i = \infty \text{ for all } i \neq s \\ F = \{s\} \\ \text{while } F \neq \emptyset \\ i = \operatorname*{argmin}_{i \in F} v_i \\ F = F \setminus \{i\} \\ \text{ for } j \in \mathcal{N}_i \\ \text{ if } v_j > v_i + g_{ij} \\ v_j = v_i + g_{ij} \\ F = F \cup \{j\} \end{array}$$

- ▶ maintains a set *F* called the *frontier* or *open* set
- ▶ terminates with $v_i = \mathbf{dist}(s, i)$ if graph has no negative cycles
- \blacktriangleright extracts the vertex with smallest v_i , relaxes its outgoing edges

Dijkstra's algorithm

$$\begin{array}{l} v_s = 0 \\ v_i = \infty \text{ for all } i \neq s \\ F = \{s\} \\ \text{while } F \neq \emptyset \\ i = \operatorname*{argmin}_{i \in F} v_i \\ F = F \setminus \{i\} \\ \text{ for } j \in \mathcal{N}_i \\ \text{ if } v_j > v_i + g_{ij} \\ v_j = v_i + g_{ij} \\ F = F \cup \{j\} \end{array}$$

when all $g_{ij} \ge 0$

- \blacktriangleright algorithm extracts vertices in order of distance from s
- each vertex is extracted at most once

• $v_i \geq \mathbf{dist}(s, i)$ always; equality when i is extracted

Interpretation of Dijkstra's algorithm

- ▶ the algorithm may be thought of as a *simulation of fluid flow*
- ▶ imagine fluid traveling from the source vertex *s*, moving at speed 1
- ▶ g_{ij} is time for fluid to traverse edge $i \rightarrow j$
- \blacktriangleright set v_i at neighbors of i to be the estimated time of arrival
- when fluid arrives at the next vertex, update the ETA of its neighbors
- some of these estimates may be too large, since the fluid might find shortcuts

Keeping track of visited vertices

 $\begin{array}{l} v_s = 0 \\ v_i = \infty \text{ for all } i \neq s \\ F = \{s\} \\ E = \emptyset \\ \text{while } F \neq \emptyset \\ i = \operatorname*{argmin}_{i \in F} v_i \qquad // \text{ extract vertex } i \\ F = F \setminus \{i\} \\ E = E \cup \{i\} \\ \text{ for } j \in \mathcal{N}_i \\ \text{ if } v_j > v_i + g_{ij} \\ v_j = v_i + g_{ij} \\ F = F \cup \{j\} \end{array}$

▶ keeps track of *E*, the set of visited vertices, called the *closed* set

Inductive proof

When all weights $g_{ij} \ge 0$, one can show by induction that, after each iteration

 \blacktriangleright there is some d such that

$\mathbf{dist}(s,i) \le d$	for all $i \in E$
$\mathbf{dist}(s,i) \ge d$	for all $i \not\in E$

▶ for all *i*, v_i is the length of the shortest path $s \rightsquigarrow i$ fully contained in E

Termination

$$\begin{array}{ll} F = \{s\}; E = \emptyset \\ v_s = 0 \\ \text{while } F \neq \emptyset \\ i = \operatorname*{argmin} v_i \\ 1 & F = F \setminus \{i\}; E = E \cup \{i\} \\ \text{if } i \in \mathcal{T} \text{ terminate} \\ \text{for } j \in \mathcal{N}_i \\ \text{if } j \notin F \cup E \\ v_j = v_i + g_{ij}; F = F \cup \{j\} \\ \text{else if } j \in F \\ v_j = \min\{v_j, v_i + g_{ij}\} \\ \text{else if } v_j > v_i + g_{ij} \\ v_j = v_i + g_{ij} \\ 2 & E = E \setminus \{j\}; F = F \cup \{j\} \\ \end{array}$$

Theorem

for any weights g such that $dist(i, \mathcal{T}) \ge 0$ for all $i \in \mathcal{V}$

- ▶ the algorithm terminates
- ▶ on termination, $v_i = \mathbf{dist}(s, i)$

- condition allows negative edges, but no negative cycles
- \blacktriangleright since v_i is the optimal cost, assigning parents as the algorithm progresses gives a shortest path from s to i
- note that the only reason we need additional assumptions (compared with the simplest algorithm) is that we are terminating the search early

The closed set

- maintaining the set E is optional
- \blacktriangleright the algorithm reduces to the previous one if we do not maintain E
- \blacktriangleright often E is stored as a hash table, along with the values of v in E
- ▶ if we remove from E (in line 2), then E and F are always disjoint
- then (depending on the implementation) it may be easier to implement addition of elements to E (in line 1)

Efficient implementation

- ▶ store *F* as a *heap* providing insert, delete, and extract-min operations
- \blacktriangleright since we terminate early, we do not need to store v_i for every vertex i
- \blacktriangleright store v using a *hash table*, or keep values of v with vertices
- ▶ implement set *E* as a hash table
- neither hash tables nor heaps are available in Matlab
- in Matlab arrays are a workaround, but scale poorly
- if V is small, then we can mark vertices as open/closed in an array instead of maintaining sets/lists

Example: Two dimensional grid

 \blacktriangleright frontier *F* shown in yellow

 \blacktriangleright closed set *E* shown in blue

