EE365: Dynamic Programming

Markov decision problem

Given

» functions fo,..., fr—1

» stage cost functions go, ..., gr—1 and terminal cost gr

» distributions of independent random variables zq, wo, ..., wr—1
Here

» system obeys dynamics zy1 = fi(ze, ue, wy).
» we seek a state feedback policy: us = ()

» we consider deterministic costs for simplicity

Optimal value function

Define the optimal value function

» minimization is over policies jit,. .., -1
» z; is known, so we can minimize over action u; and policies py41,...,pr—1

» V;*(x) is expected cost-to-go, using an optimal policy, if z; = x

v

T = Y, mo@)Ve (¢) = moVs

» V;* also called Bellman value function, optimal cost-to-go function

Optimal policy

» the policy

pi (z) € argmin (g (z, u) + BV (fi(x, u,wi)))

is optimal
» expectation is over wy
» can choose any minimizer when minimizer is not unique
» there can be optimal policies not of the form above

» looks circular and useless: need to know optimal policy to find V;*

Interpretation

pi (z) € argmin (ge(z, u) + BV (fi(w, u,we)))

assuming you are in state z at time ¢, and take action u

» g:(z,u) (a number) is the current stage cost you pay

» Vi1 (fe(z, u,we)) (a random variable) is the cost-to-go from where you land,
if you follow an optimal policy for t +1,..., 7 — 1

» EV.% 1 (fi(z,u,w:)) (a number) is the expected cost-to-go from where you
land

optimal action is to minimize sum of current stage cost and expected cost-to-go
from where you land

Greedy policy

» greedy policy is pf' (z) € argmin, g+(x, u)

» at any state, minimizes current stage cost without regard for effect of current
action on future states

» in optimal policy

pi (z) € argmin (ge(x,w) + E Vi (fi(x, u,we)))

second term summarizes effect of current action on future states

Dynamic programming recursion

» define V7 (x) := gr(x)
» fort=T-1,...,0,
» find optimal policy for time ¢ in terms of V% ;:

pi (z) € argmin (ge(z, u) + BV (fi(x, u, wi)))

» find V;* using u;:

Vi (@) = min (gu(e,w) + BV (file, 0, 0))

» a recursion that runs backward in time

» complexity is T'|X||U||W)] operations (fewer when P is sparse)

Variations

» random costs:

it (z) € argmin,, E (g:(z, u, we) + Vi (fe(w, u,w01))

Vi (@) := E ge(, pi (2), we) + BV (fe(, i (2), wr))
» state-action separable cost g:(z,u) = q+(x) + 7 (u):

it (z) € argmin,, (r+(u) + E Vi (f: (0, u,w,))

Vi (@) := qi(@) + re(pi (z)) + BV (fe (@, pi (), we))
» deterministic system:

pi(z) € argmin, (g:(z,) + Vit (fi(z, u)))
Vit (@) = gi(z, pi (x)) + Vi (fi(z, pi (2)))

