EE365: Dynamic Programming Proof

Markov decision problem

find policy
$$\mu = (\mu_0, \dots, \mu_{T-1})$$
 that minimizes $J^{\mu} = \mathbf{E}\left(\sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T)\right)$

Given

- functions f_0, \ldots, f_{T-1}
- ▶ stage cost functions g_0, \ldots, g_{T-1} and terminal cost g_T
- distributions of independent random variables $x_0, w_0, \ldots, w_{T-1}$

Here

- ▶ system obeys dynamics $x_{t+1} = f_t(x_t, u_t, w_t)$.
- we seek a *state feedback* policy: $u_t = \mu_t(x_t)$
- we consider deterministic costs for simplicity

Bellman operator

define the Bellman (or DP) operator \mathcal{T}_t as

$$\mathcal{T}_t(h)(x) = \min_u \left(g_t(x, u) + \mathbf{E} h(f_t(x, u, w_t)) \right)$$

• map operates on any function $h: \mathcal{X} \to \mathbb{R}$

• define the optimal value function, for $t = T - 1, \dots, 0$

$$v_T^{\star} = g_T \qquad v_t^{\star} = \mathcal{T}_t(v_{t+1}^{\star})$$

Performance of the optimal policy

 \blacktriangleright for the optimal policy μ^{\star} we have

$$v_t^{\star}(x) = g_t(x, \mu_t^{\star}(x)) + \mathbf{E} v_{t+1}^{\star}(f_t(x, \mu_t^{\star}(x), w_t)), \quad t = T - 1, \dots, 0$$

▶ this is value iteration for evaluating J^* , so $J^* = \pi_0 v_0^*$

Performance of any policy

 \blacktriangleright for any policy μ we define the value function for $t=T-1,\ldots,0$

$$v_T^{\mu} = g_T$$
 $v_t^{\mu} = g_t(x, \mu_t(x)) + \mathbf{E} v_{t+1}^{\mu}(f_t(x, \mu_t(x), w_t))$

▶ the cost achieved is $J^{\mu} = \pi_0 v_0^{\mu}$

Optimal policy is better for one step

for any policy $\boldsymbol{\mu}$

$$v_t^{\mu} \ge \mathcal{T}_t(v_{t+1}^{\mu})$$

i.e., acting optimally for the step at time t is better than using policy µ
 because, for all x

$$v_t^{\mu}(x) = g_t(x, \mu_t(x)) + \mathbf{E} v_{t+1}^{\mu}(f_t(x, \mu_t(x), w_t))$$

$$\geq \mathcal{T}_t(v_{t+1}^{\mu})(x)$$

▶ since T_t minimizes over all choices of $u = \mu_t(x)$

Monotonicity of Bellman operator

The Bellman operator is monotone

$$h \leq \tilde{h} \implies \mathcal{T}_t(h) \leq \mathcal{T}_t(\tilde{h})$$

- \blacktriangleright inequalities mean for all x
- ▶ to see this, assume $h \leq \tilde{h}$, then for any x and u

 $g_t(x, u) + \mathbf{E} h(f_t(x, u, w_t)) \le g_t(x, u) + \mathbf{E} \tilde{h}(f_t(x, u, w_t))$

 \blacktriangleright minimizing each side over u gives above

Theorem

suppose

•
$$v_T^* = g_T$$
 and $v_t^* = \mathcal{T}_t(v_{t+1}^*)$ for $t = T - 1, ..., 0$
• μ is any policy
• $v_T^{\mu} = g_T$ and $v_t^{\mu} = g_t(x, \mu_t(x)) + \mathbf{E} v_{t+1}^{\mu}(f_t(x, \mu_t(x), w_t))$ for $t = T - 1, ..., 0$

then for all $t = 0, \ldots, T$

$$v_t^\star \le v_t^\mu$$

and hence $J^{\star} \leq J^{\mu}$

Proof of optimality

▶ using
$$v_t^{\star} = \mathcal{T}_t(v_{t+1}^{\star}), v_t^{\mu} \ge \mathcal{T}_t(v_{t+1}^{\mu}), \text{ and } v_T^{\star} = v_T^{\mu} = g_T,$$

 $v_t^{\mu} \ge \mathcal{T}_t(v_{t+1}^{\mu})$
 $\ge \mathcal{T}_t\mathcal{T}_{t+1}(v_{t+2}^{\mu})$
 \vdots
 $\ge \mathcal{T}_t\mathcal{T}_{t+1}\cdots\mathcal{T}_{T-1}(v_T^{\mu})$
 $= \mathcal{T}_t\mathcal{T}_{t+1}\cdots\mathcal{T}_{T-1}(g_T)$
 $= v_t^{\star}$

Summary

- ▶ any policy defined by dynamic programming is optimal
- ▶ (can replace 'any' with 'the' when the argmins are unique)
- ▶ v_t^* is minimal for any t, over all policies (*i.e.*, $v_t^* \leq v_t^{\mu}$)
- ► there can be other optimal (but pathological) policies; for example we can set $\mu_0(x)$ to be anything you like, provided $\pi_0(x) = 0$