EE365: Dynamic Programming Proof

Markov decision problem

$$
\text { find policy } \mu=\left(\mu_{0}, \ldots, \mu_{T-1}\right) \text { that minimizes }
$$

$$
J^{\mu}=\mathbf{E}\left(\sum_{t=0}^{T-1} g_{t}\left(x_{t}, u_{t}\right)+g_{T}\left(x_{T}\right)\right)
$$

Given

- functions f_{0}, \ldots, f_{T-1}
- stage cost functions g_{0}, \ldots, g_{T-1} and terminal cost g_{T}
- distributions of independent random variables $x_{0}, w_{0}, \ldots, w_{T-1}$

Here

- system obeys dynamics $x_{t+1}=f_{t}\left(x_{t}, u_{t}, w_{t}\right)$.
- we seek a state feedback policy: $u_{t}=\mu_{t}\left(x_{t}\right)$
- we consider deterministic costs for simplicity

Bellman operator

define the Bellman (or DP) operator \mathcal{T}_{t} as

$$
\mathcal{T}_{t}(h)(x)=\min _{u}\left(g_{t}(x, u)+\mathbf{E} h\left(f_{t}\left(x, u, w_{t}\right)\right)\right)
$$

- map operates on any function $h: \mathcal{X} \rightarrow \mathbb{R}$
- define the optimal value function, for $t=T-1, \ldots, 0$

$$
v_{T}^{\star}=g_{T} \quad v_{t}^{\star}=\mathcal{T}_{t}\left(v_{t+1}^{\star}\right)
$$

Performance of the optimal policy

- for the optimal policy μ^{\star} we have

$$
v_{t}^{\star}(x)=g_{t}\left(x, \mu_{t}^{\star}(x)\right)+\mathbf{E} v_{t+1}^{\star}\left(f_{t}\left(x, \mu_{t}^{\star}(x), w_{t}\right)\right), \quad t=T-1, \ldots, 0
$$

- this is value iteration for evaluating J^{\star}, so $J^{\star}=\pi_{0} v_{0}^{\star}$

Performance of any policy

- for any policy μ we define the value function for $t=T-1, \ldots, 0$

$$
v_{T}^{\mu}=g_{T} \quad v_{t}^{\mu}=g_{t}\left(x, \mu_{t}(x)\right)+\mathbf{E} v_{t+1}^{\mu}\left(f_{t}\left(x, \mu_{t}(x), w_{t}\right)\right)
$$

- the cost achieved is $J^{\mu}=\pi_{0} v_{0}^{\mu}$

Optimal policy is better for one step

for any policy μ

$$
v_{t}^{\mu} \geq \mathcal{T}_{t}\left(v_{t+1}^{\mu}\right)
$$

- i.e., acting optimally for the step at time t is better than using policy μ
- because, for all x

$$
\begin{aligned}
v_{t}^{\mu}(x) & =g_{t}\left(x, \mu_{t}(x)\right)+\mathbf{E} v_{t+1}^{\mu}\left(f_{t}\left(x, \mu_{t}(x), w_{t}\right)\right) \\
& \geq \mathcal{T}_{t}\left(v_{t+1}^{\mu}\right)(x)
\end{aligned}
$$

- since \mathcal{T}_{t} minimizes over all choices of $u=\mu_{t}(x)$

Monotonicity of Bellman operator

The Bellman operator is monotone

$$
h \leq \tilde{h} \quad \Longrightarrow \quad \mathcal{T}_{t}(h) \leq \mathcal{T}_{t}(\tilde{h})
$$

- inequalities mean for all x
- to see this, assume $h \leq \tilde{h}$, then for any x and u

$$
g_{t}(x, u)+\mathbf{E} h\left(f_{t}\left(x, u, w_{t}\right)\right) \leq g_{t}(x, u)+\mathbf{E} \tilde{h}\left(f_{t}\left(x, u, w_{t}\right)\right)
$$

- minimizing each side over u gives above

Theorem

suppose

- $v_{T}^{\star}=g_{T}$ and $v_{t}^{\star}=\mathcal{T}_{t}\left(v_{t+1}^{\star}\right)$ for $t=T-1, \ldots, 0$
- μ is any policy
- $v_{T}^{\mu}=g_{T}$ and $v_{t}^{\mu}=g_{t}\left(x, \mu_{t}(x)\right)+\mathbf{E} v_{t+1}^{\mu}\left(f_{t}\left(x, \mu_{t}(x), w_{t}\right)\right)$ for $t=T-1, \ldots, 0$
then for all $t=0, \ldots, T$

$$
v_{t}^{\star} \leq v_{t}^{\mu}
$$

and hence $J^{\star} \leq J^{\mu}$

Proof of optimality

- using $v_{t}^{\star}=\mathcal{T}_{t}\left(v_{t+1}^{\star}\right), v_{t}^{\mu} \geq \mathcal{T}_{t}\left(v_{t+1}^{\mu}\right)$, and $v_{T}^{\star}=v_{T}^{\mu}=g_{T}$,

$$
\begin{aligned}
v_{t}^{\mu} & \geq \mathcal{T}_{t}\left(v_{t+1}^{\mu}\right) \\
& \geq \mathcal{T}_{t} \mathcal{T}_{t+1}\left(v_{t+2}^{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \mathcal{T}_{t} \mathcal{T}_{t+1} \cdots \mathcal{T}_{T-1}\left(v_{T}^{\mu}\right) \\
& =\mathcal{T}^{\prime} \mathcal{T}_{t+1} \cdots \mathcal{T}_{T-1}\left(g_{T}\right) \\
& =v_{t}^{\star}
\end{aligned}
$$

Summary

- any policy defined by dynamic programming is optimal
- (can replace 'any' with 'the' when the argmins are unique)
- v_{t}^{\star} is minimal for any t, over all policies (i.e., $v_{t}^{\star} \leq v_{t}^{\mu}$)
- there can be other optimal (but pathological) policies; for example we can set $\mu_{0}(x)$ to be anything you like, provided $\pi_{0}(x)=0$

