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Hidden Markov models

Tt41 = ft(wt, wt)

Y = he(we, 2t)

» called a hidden Markov model or HMM

» the states of the Markov Chain are not measurable (hence hidden)
» instead, we see Yo, Y1, - .

» Y is a noisy measurement of x

» many applications: bioinformatics, communications, recognition of speech,
handwriting, and gestures



Hidden Markov models

» 0, Wo, W1, ..., 20,21,... are independent
» hence the state sequence xo,x1, ... is Markov
» w; is process noise or disturbance

» 2z: is measurement noise



Hidden Markov Models

order the variables as
To0,Y0,T1,Y1, T2, .-

and apply the chain rule

Prob(y:, zt,...,y0,20) =Prob(y: | z¢, y+—1, Tt—1, ..., Yo, To)
Prob(z; | ye—1,%¢—1,- -, Yo, Zo)

Prob(ys—1 | Tt—1,Yt—2,Tt—2, ..., Y0, Z0)

Prob(z1 | yo, zo)
Prob(yo | zo)
Prob(zo)



Hidden Markov Models

then we have

Prob(yo, ..., Yt, Xoy. .., Tt)
= Qu(@t, Yt ) Pe(x—1, ) Qe—1(Tt—1,Yt—1) - - - Qo(To, Yo)7(20)

> Qi(w:,y:) = Prob(y: | x:) = Prob(y: | ©¢,yt—1,Tt—1, - -, Yo, To)
» Pi(x¢—1,x¢) = Prob(x: | xt—1) = Prob(x: | ye—1,%¢—1,...,Y0,T0)

» 7(z0) = Prob(zo)



Time-invariant case

Tt+1 = f(xt,'wt)

ye = h(xe, 2t)

» Zo,T1,... € X is a Markov chain with

» transition probabilities P;; = Prob(zi11 = j | 2 = 1)

» initial distribution 7; = Prob(zo = j)

> Yo,Y1,... € YV is a set of measurements related to x; by conditional proba-
bilities Qi = Prob(y, = k | x¢ = 1)



Hidden Markov Model

)
©» ® © O

» z: € X ={1,2,...,n} are the hidden states
» y: € Y ={1,2,...,r} are the measurements

» to specify a (time-invariant) HMM we only need

> state transtion matrix P;; = Prob(zi+1 =j |z = 14)
» observation transition matrix Q;x = Prob(y: =k |z = 1)

» initial state distribution 7; = Prob(zo = j)

» can construct these from f, h



The Viterbi Algorithm



Maximum a posteriori state estimation

» time interval [0, T

» we don't know the state sequence xo, ..., zr, but we do know the measure-
ments yo, . .., yr (and the probabilities P;;, m;, Qix)

» so we will estimate o, ...,z based on the measurements yo,...,yr
» we would like to find the maximum a posteriori (MAP) estimate of zo, . .., zT,
denoted Zo, ..., T, maximizes Prob(zo,...,z7 | Yo,...,yr)

» in other words, find the most likely sequence of states given the measurements

» nTT! possible sequences, so brute force consideration of all paths intractable
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Maximum a posteriori state estimation

» same as maximizing (over xo, ..., )

Prob(zo,...,z7) Prob(yo,...,yr | zo,...,z7)

= (Prob(mo) 1:_[ Prob(z:41 | xt)) (

t=0
T—1
= Mg | | Poywyiy Queye | Quryr
t=0

» equivalently, minimize the negative logarithm

T
HPI‘Ob(yt | xt)

t=0

)
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MAP Markov state estimation a shortest path problem

t=5
gi,1
gr (
1,2
.
gr(2)
g1,
T(3)
» vertices zy € X x {0,1,...,T}
» two additional vertices {so, Starget }
> edge cost g(z¢, Teq1) = — IOg(PZt,Zt+1ta,yt)
» edges T7 — Starget have terminal cost gr(zr) = —10g Qur,yr

» edges so — xo have initial cost go(zo) = — log 74,
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Viterbi algorithm

an efficient method for MAP estimation of Markov state sequence:

» use Bellman-Ford to find shortest path from sg to Starget

» the resulting sequence of states is the MAP estimate
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Example: Grid sensors

» intruder starts from top-left corner

» direction of motion determined by state of Markov chain

» 40 by 40 grid, d = 3 directions, |X| = 4800 possible states

» laser sensors detect crossing odd rows and columns

» 20 vertical sensors, 20 horizontal sensors, 441 possible measurements

» sensors detect intruder with probability 0.3
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Example: Grid sensors

dynamics are

ZTe41 = d(xe + d(my))

mi+1 = (mt + wt) mod 3

» directions are d(0) = [ﬂ d(1) = {(1)} and d(2) = [ﬂ

» wo, w1, ... are [ID Bernoulli with Prob(w, = 1) = 0.2

» ¢(z) clips components of z to [1,40]
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Example: Grid sensors

measurements are

|[(zit+1)/2] ifzit=1and z;: mod2=1
Yit = .
21 otherwise

» at each time ¢ we measure y1 and y2, functions of horizontal and vertical
vehicle coordinates 1 and x2

» z1: and 2z are [ID Bernoulli sequences with Prob(z;; = 1) = 0.3
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Viterbi updates
the Viterbi algorithm is

vo(z) = —log m, for all z
fort=0,..., 7T -1
pi(x) = argmin (ve(u) — 10g(PuzQu.y, ))
Vi (z) = I%n(vt(u) — log(PuzQuy.))

» at every step

vy (2¢) —10g Quy .y, = — log(Prob(xzo, ..., z¢) Prob(yo, ...,y | Zo,...,x))

» the x; that maximizes this quantity is &, the MAP estimate given yo, ..., Yyt

» pi(wer1) is the parent vertex of x,41 along the shortest path

17



Viterbi computation

» simple implementation:

» measure Yo, ..., Yt
» compute vg, ..., Vs

» compute &; by maximizing vi(x+) — log Qqz; .y,

» follow parent links: &5 = ps(Zs41) for s=¢t—1,...

» gives MAP estimate Zo,..., 2t

,0
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Viterbi updates

» at time t, to compute Zo, - - - &+ we need v; and uo, ..., -1
» these do not change over time, so we can reuse them at the next time-step
» this gives an on-line version of the Viterbi algorithm; at each time ¢

> measure Y
» compute vi41 and py from vy and y:
» compute &; by maximizing vi(x+) — log Qqz; .y,

» follow parent links to find s = ps(&s41) fors=t—1,...,0
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