EE365: Hidden Markov Models

Hidden Markov Models

The Viterbi Algorithm

Hidden Markov Models

Hidden Markov models

$$x_{t+1} = f_t(x_t, w_t)$$
$$y_t = h_t(x_t, z_t)$$

- called a hidden Markov model or HMM
- ▶ the states of the Markov Chain are not measurable (hence *hidden*)
- ightharpoonup instead, we see y_0, y_1, \ldots
- $ightharpoonup y_t$ is a *noisy measurement* of x_t
- many applications: bioinformatics, communications, recognition of speech, handwriting, and gestures

Hidden Markov models

$$x_{t+1} = f_t(x_t, w_t)$$
$$y_t = h_t(x_t, z_t)$$

- $\blacktriangleright x_0, w_0, w_1, \ldots, z_0, z_1, \ldots$ are independent
- ightharpoonup hence the *state sequence* x_0, x_1, \ldots is Markov
- $ightharpoonup w_t$ is process noise or disturbance
- \triangleright z_t is measurement noise

Hidden Markov Models

order the variables as

$$x_0, y_0, x_1, y_1, x_2, \dots$$

and apply the chain rule

$$\begin{aligned} \mathbf{Prob}(y_{t}, x_{t}, \dots, y_{0}, x_{0}) &= \mathbf{Prob}(y_{t} \mid x_{t}, y_{t-1}, x_{t-1}, \dots, y_{0}, x_{0}) \\ &\quad \mathbf{Prob}(x_{t} \mid y_{t-1}, x_{t-1}, \dots, y_{0}, x_{0}) \\ &\quad \mathbf{Prob}(y_{t-1} \mid x_{t-1}, y_{t-2}, x_{t-2}, \dots, y_{0}, x_{0}) \\ &\quad \vdots \\ &\quad \mathbf{Prob}(x_{1} \mid y_{0}, x_{0}) \\ &\quad \mathbf{Prob}(y_{0} \mid x_{0}) \\ &\quad \mathbf{Prob}(x_{0}) \end{aligned}$$

Hidden Markov Models

then we have

$$\mathbf{Prob}(y_0, \dots, y_t, x_0, \dots, x_t)$$

$$= Q_t(x_t, y_t) P_t(x_{t-1}, x_t) Q_{t-1}(x_{t-1}, y_{t-1}) \dots Q_0(x_0, y_0) \pi(x_0)$$

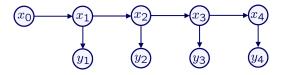
- $Q_t(x_t, y_t) = \mathbf{Prob}(y_t \mid x_t) = \mathbf{Prob}(y_t \mid x_t, y_{t-1}, x_{t-1}, \dots, y_0, x_0)$
- $P_t(x_{t-1}, x_t) = \mathbf{Prob}(x_t \mid x_{t-1}) = \mathbf{Prob}(x_t \mid y_{t-1}, x_{t-1}, \dots, y_0, x_0)$
- $\pi(x_0) = \mathbf{Prob}(x_0)$

Time-invariant case

$$x_{t+1} = f(x_t, w_t)$$
$$y_t = h(x_t, z_t)$$

- $ightharpoonup x_0, x_1, \ldots \in \mathcal{X}$ is a Markov chain with
 - ▶ transition probabilities $P_{ij} = \mathbf{Prob}(x_{t+1} = j \mid x_t = i)$
 - ▶ initial distribution $\pi_j = \mathbf{Prob}(x_0 = j)$
- ▶ $y_0, y_1, \ldots \in \mathcal{Y}$ is a set of measurements related to x_t by conditional probabilities $Q_{ik} = \mathbf{Prob}(y_t = k \mid x_t = i)$

Hidden Markov Model



- ▶ $x_t \in \mathcal{X} = \{1, 2, ..., n\}$ are the hidden states
- ullet $y_t \in \mathcal{Y} = \{1, 2, \dots, r\}$ are the measurements
- ▶ to specify a (time-invariant) HMM we only need
 - state transtion matrix $P_{ij} = \mathbf{Prob}(x_{t+1} = j \mid x_t = i)$
 - $lackbox{ observation transition matrix } Q_{ik} = \mathbf{Prob}(y_t = k \mid x_t = i)$
 - ▶ initial state distribution $\pi_j = \mathbf{Prob}(x_0 = j)$
- ightharpoonup can construct these from f,h

The Viterbi Algorithm

Maximum a posteriori state estimation

- \blacktriangleright time interval [0,T]
- we don't know the state sequence x_0, \ldots, x_T , but we do know the measurements y_0, \ldots, y_T (and the probabilities P_{ij}, π_j, Q_{ik})
- \blacktriangleright so we will estimate x_0,\ldots,x_T based on the measurements y_0,\ldots,y_T
- we would like to find the maximum a posteriori (MAP) estimate of x_0, \ldots, x_T , denoted $\hat{x}_0, \ldots, \hat{x}_T$, maximizes $\mathbf{Prob}(x_0, \ldots, x_T \mid y_0, \ldots, y_T)$
- ▶ in other words, find the *most likely* sequence of states given the measurements
- $lacktriangleright n^{T+1}$ possible sequences, so brute force consideration of all paths intractable

Maximum a posteriori state estimation

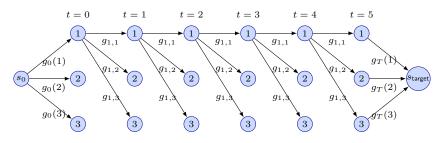
ightharpoonup same as maximizing (over x_0, \ldots, x_T)

$$\begin{aligned} \mathbf{Prob}(x_0, \dots, x_T) \, \mathbf{Prob}(y_0, \dots, y_T \mid x_0, \dots, x_T) \\ &= \left(\mathbf{Prob}(x_0) \prod_{t=0}^{T-1} \mathbf{Prob}(x_{t+1} \mid x_t) \right) \left(\prod_{t=0}^{T} \mathbf{Prob}(y_t \mid x_t) \right) \\ &= \pi_{x_0} \left(\prod_{t=0}^{T-1} P_{x_t, x_{t+1}} Q_{x_t, y_t} \right) Q_{x_T, y_T} \end{aligned}$$

equivalently, minimize the negative logarithm

$$-\log \pi_{x_0} - \sum_{t=0}^{T-1} \log(P_{x_t, x_{t+1}} Q_{x_t, y_t}) - \log Q_{x_T, y_T}$$

MAP Markov state estimation a shortest path problem



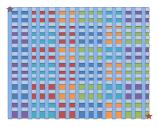
- \blacktriangleright vertices $x_t \in \mathcal{X} \times \{0, 1, \dots, T\}$
- \blacktriangleright two additional vertices $\{s_0, s_{\mathsf{target}}\}$
- edge cost $g(x_t, x_{t+1}) = -\log(P_{x_t, x_{t+1}} Q_{x_t, y_t})$
- lacktriangledown edges $x_T o s_{ ext{target}}$ have terminal cost $g_T(x_T) = -\log Q_{x_T,y_T}$
- ▶ edges $s_0 \to x_0$ have initial cost $g_0(x_0) = -\log \pi_{x_0}$

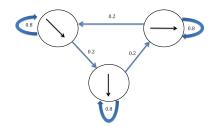
Viterbi algorithm

an efficient method for MAP estimation of Markov state sequence:

- lacktriangle use Bellman-Ford to find shortest path from s_0 to s_{target}
- ▶ the resulting sequence of states is the MAP estimate

Example: Grid sensors





- ▶ intruder starts from top-left corner
- ▶ direction of motion determined by state of Markov chain
- ▶ 40 by 40 grid, d = 3 directions, $|\mathcal{X}| = 4800$ possible states
- ▶ laser sensors detect crossing odd rows and columns
- \blacktriangleright 20 vertical sensors, 20 horizontal sensors, 441 possible measurements
- ▶ sensors detect intruder with probability 0.3

Example: Grid sensors

dynamics are

$$x_{t+1} = \phi(x_t + d(m_t))$$

$$m_{t+1} = (m_t + w_t) \mod 3$$

- $\blacktriangleright \ \ \text{directions are} \ d(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{,} \ d(1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ \text{and} \ d(2) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- $ightharpoonup w_0, w_1, \ldots$ are IID Bernoulli with $\mathbf{Prob}(w_t=1)=0.2$
- $lackbox{}\phi(x)$ clips components of x to [1,40]

Example: Grid sensors

measurements are

$$y_{i,t} = \begin{cases} \lfloor (x_{i,t}+1)/2 \rfloor & \text{if } z_{i,t}=1 \text{ and } x_{i,t} \text{ mod } 2=1\\ 21 & \text{otherwise} \end{cases}$$

- ightharpoonup at each time t we measure y_1 and y_2 , functions of horizontal and vertical vehicle coordinates x_1 and x_2
- ▶ $z_{1,t}$ and $z_{2,t}$ are IID Bernoulli sequences with $\mathbf{Prob}(z_{i,t}=1)=0.3$

Viterbi updates

the Viterbi algorithm is

$$\begin{split} v_0(x) &= -\log \pi_x \text{ for all } x \\ \text{for } t &= 0, \dots, T-1 \\ \mu_t(x) &= \operatorname*{argmin}_u \bigl(v_t(u) - \log(P_{ux}Q_{u,y_t}) \bigr) \\ v_{t+1}(x) &= \min_u \bigl(v_t(u) - \log(P_{ux}Q_{u,y_t}) \bigr) \end{split}$$

▶ at every step

$$v_t(x_t) - \log Q_{x_t, y_t} = -\log \left(\mathbf{Prob}(x_0, \dots, x_t) \mathbf{Prob}(y_0, \dots, y_t \mid x_0, \dots, x_t) \right)$$

- lacktriangle the x_t that maximizes this quantity is \hat{x}_t , the MAP estimate given y_0,\ldots,y_t
- $\blacktriangleright \mu_t(x_{t+1})$ is the parent vertex of x_{t+1} along the shortest path

Viterbi computation

- simple implementation:
 - ightharpoonup measure y_0,\ldots,y_t
 - ightharpoonup compute v_0, \ldots, v_t
 - lacktriangle compute \hat{x}_t by maximizing $v_t(x_t) \log Q_{x_t,y_t}$
 - ▶ follow parent links: $\hat{x}_s = \mu_s(\hat{x}_{s+1})$ for $s = t-1, \ldots, 0$
- ightharpoonup gives MAP estimate $\hat{x}_0,\ldots,\hat{x}_t$

Viterbi updates

- \blacktriangleright at time t, to compute $\hat{x}_0, \cdots \hat{x}_t$ we need v_t and μ_0, \dots, μ_{t-1}
- ▶ these do not change over time, so we can reuse them at the next time-step
- \blacktriangleright this gives an *on-line* version of the Viterbi algorithm; at each time t
 - ightharpoonup measure y_t
 - \blacktriangleright compute v_{t+1} and μ_t from v_t and y_t
 - lacktriangle compute \hat{x}_t by maximizing $v_t(x_t) \log Q_{x_t,y_t}$
 - ▶ follow parent links to find $\hat{x}_s = \mu_s(\hat{x}_{s+1})$ for $s = t 1, \dots, 0$