EE365: Hidden Markov Models

Hidden Markov Models

The Viterbi Algorithm

Hidden Markov Models

Hidden Markov models

$$
\begin{aligned}
x_{t+1} & =f_{t}\left(x_{t}, w_{t}\right) \\
y_{t} & =h_{t}\left(x_{t}, z_{t}\right)
\end{aligned}
$$

- called a hidden Markov model or HMM
- the states of the Markov Chain are not measurable (hence hidden)
- instead, we see y_{0}, y_{1}, \ldots
- y_{t} is a noisy measurement of x_{t}
- many applications: bioinformatics, communications, recognition of speech, handwriting, and gestures

Hidden Markov models

$$
\begin{aligned}
x_{t+1} & =f_{t}\left(x_{t}, w_{t}\right) \\
y_{t} & =h_{t}\left(x_{t}, z_{t}\right)
\end{aligned}
$$

- $x_{0}, w_{0}, w_{1}, \ldots, z_{0}, z_{1}, \ldots$ are independent
- hence the state sequence x_{0}, x_{1}, \ldots is Markov
- w_{t} is process noise or disturbance
- z_{t} is measurement noise

Hidden Markov Models

order the variables as

$$
x_{0}, y_{0}, x_{1}, y_{1}, x_{2}, \ldots
$$

and apply the chain rule

$$
\begin{aligned}
\operatorname{Prob}\left(y_{t}, x_{t}, \ldots, y_{0}, x_{0}\right)= & \operatorname{Prob}\left(y_{t} \mid x_{t}, y_{t-1}, x_{t-1}, \ldots, y_{0}, x_{0}\right) \\
& \operatorname{Prob}\left(x_{t} \mid y_{t-1}, x_{t-1}, \ldots, y_{0}, x_{0}\right) \\
& \operatorname{Prob}\left(y_{t-1} \mid x_{t-1}, y_{t-2}, x_{t-2}, \ldots, y_{0}, x_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Prob}\left(x_{1} \mid y_{0}, x_{0}\right) \\
& \operatorname{Prob}\left(y_{0} \mid x_{0}\right) \\
& \operatorname{Prob}\left(x_{0}\right)
\end{aligned}
$$

Hidden Markov Models

then we have

$$
\begin{aligned}
& \operatorname{Prob}\left(y_{0}, \ldots,\right. \\
& \left.\quad y_{t}, x_{0}, \ldots, x_{t}\right) \\
& \quad=Q_{t}\left(x_{t}, y_{t}\right) P_{t}\left(x_{t-1}, x_{t}\right) Q_{t-1}\left(x_{t-1}, y_{t-1}\right) \ldots Q_{0}\left(x_{0}, y_{0}\right) \pi\left(x_{0}\right)
\end{aligned}
$$

- $Q_{t}\left(x_{t}, y_{t}\right)=\operatorname{Prob}\left(y_{t} \mid x_{t}\right)=\operatorname{Prob}\left(y_{t} \mid x_{t}, y_{t-1}, x_{t-1}, \ldots, y_{0}, x_{0}\right)$
- $P_{t}\left(x_{t-1}, x_{t}\right)=\operatorname{Prob}\left(x_{t} \mid x_{t-1}\right)=\operatorname{Prob}\left(x_{t} \mid y_{t-1}, x_{t-1}, \ldots, y_{0}, x_{0}\right)$
- $\pi\left(x_{0}\right)=\operatorname{Prob}\left(x_{0}\right)$

Time-invariant case

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, w_{t}\right) \\
y_{t} & =h\left(x_{t}, z_{t}\right)
\end{aligned}
$$

- $x_{0}, x_{1}, \ldots \in \mathcal{X}$ is a Markov chain with
- transition probabilities $P_{i j}=\operatorname{Prob}\left(x_{t+1}=j \mid x_{t}=i\right)$
- initial distribution $\pi_{j}=\operatorname{Prob}\left(x_{0}=j\right)$
- $y_{0}, y_{1}, \ldots \in \mathcal{Y}$ is a set of measurements related to x_{t} by conditional probabilities $Q_{i k}=\operatorname{Prob}\left(y_{t}=k \mid x_{t}=i\right)$

Hidden Markov Model

- $x_{t} \in \mathcal{X}=\{1,2, \ldots, n\}$ are the hidden states
- $y_{t} \in \mathcal{Y}=\{1,2, \ldots, r\}$ are the measurements
- to specify a (time-invariant) HMM we only need
- state transtion matrix $P_{i j}=\operatorname{Prob}\left(x_{t+1}=j \mid x_{t}=i\right)$
- observation transition matrix $Q_{i k}=\operatorname{Prob}\left(y_{t}=k \mid x_{t}=i\right)$
- initial state distribution $\pi_{j}=\operatorname{Prob}\left(x_{0}=j\right)$
- can construct these from f, h

The Viterbi Algorithm

Maximum a posteriori state estimation

- time interval $[0, T]$
- we don't know the state sequence x_{0}, \ldots, x_{T}, but we do know the measurements y_{0}, \ldots, y_{T} (and the probabilities $P_{i j}, \pi_{j}, Q_{i k}$)
- so we will estimate x_{0}, \ldots, x_{T} based on the measurements y_{0}, \ldots, y_{T}
- we would like to find the maximum a posteriori (MAP) estimate of x_{0}, \ldots, x_{T}, denoted $\hat{x}_{0}, \ldots, \hat{x}_{T}$, maximizes $\operatorname{Prob}\left(x_{0}, \ldots, x_{T} \mid y_{0}, \ldots, y_{T}\right)$
- in other words, find the most likely sequence of states given the measurements
- n^{T+1} possible sequences, so brute force consideration of all paths intractable

Maximum a posteriori state estimation

- same as maximizing (over x_{0}, \ldots, x_{T})

$$
\begin{aligned}
\operatorname{Prob}(& \left.x_{0}, \ldots, x_{T}\right) \operatorname{Prob}\left(y_{0}, \ldots, y_{T} \mid x_{0}, \ldots, x_{T}\right) \\
& =\left(\operatorname{Prob}\left(x_{0}\right) \prod_{t=0}^{T-1} \operatorname{Prob}\left(x_{t+1} \mid x_{t}\right)\right)\left(\prod_{t=0}^{T} \operatorname{Prob}\left(y_{t} \mid x_{t}\right)\right) \\
& =\pi_{x_{0}}\left(\prod_{t=0}^{T-1} P_{x_{t}, x_{t+1}} Q_{x_{t}, y_{t}}\right) Q_{x_{T}, y_{T}}
\end{aligned}
$$

- equivalently, minimize the negative logarithm

$$
-\log \pi_{x_{0}}-\sum_{t=0}^{T-1} \log \left(P_{x_{t}, x_{t+1}} Q_{x_{t}, y_{t}}\right)-\log Q_{x_{T}, y_{T}}
$$

MAP Markov state estimation a shortest path problem

- vertices $x_{t} \in \mathcal{X} \times\{0,1, \ldots, T\}$
- two additional vertices $\left\{s_{0}, s_{\text {target }}\right\}$
- edge cost $g\left(x_{t}, x_{t+1}\right)=-\log \left(P_{x_{t}, x_{t+1}} Q_{x_{t}, y_{t}}\right)$
- edges $x_{T} \rightarrow s_{\text {target }}$ have terminal cost $g_{T}\left(x_{T}\right)=-\log Q_{x_{T}, y_{T}}$
- edges $s_{0} \rightarrow x_{0}$ have initial cost $g_{0}\left(x_{0}\right)=-\log \pi_{x_{0}}$

Viterbi algorithm

an efficient method for MAP estimation of Markov state sequence:

- use Bellman-Ford to find shortest path from s_{0} to $s_{\text {target }}$
- the resulting sequence of states is the MAP estimate

Example: Grid sensors

- intruder starts from top-left corner
- direction of motion determined by state of Markov chain
- 40 by 40 grid, $d=3$ directions, $|\mathcal{X}|=4800$ possible states
- laser sensors detect crossing odd rows and columns
- 20 vertical sensors, 20 horizontal sensors, 441 possible measurements
- sensors detect intruder with probability 0.3

Example: Grid sensors

dynamics are

$$
\begin{aligned}
x_{t+1} & =\phi\left(x_{t}+d\left(m_{t}\right)\right) \\
m_{t+1} & =\left(m_{t}+w_{t}\right) \bmod 3
\end{aligned}
$$

- directions are $d(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right], d(1)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $d(2)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- w_{0}, w_{1}, \ldots are IID Bernoulli with $\operatorname{Prob}\left(w_{t}=1\right)=0.2$
- $\phi(x)$ clips components of x to $[1,40]$

Example: Grid sensors

measurements are

$$
y_{i, t}= \begin{cases}\left\lfloor\left(x_{i, t}+1\right) / 2\right\rfloor & \text { if } z_{i, t}=1 \text { and } x_{i, t} \bmod 2=1 \\ 21 & \text { otherwise }\end{cases}
$$

- at each time t we measure y_{1} and y_{2}, functions of horizontal and vertical vehicle coordinates x_{1} and x_{2}
- $z_{1, t}$ and $z_{2, t}$ are IID Bernoulli sequences with $\operatorname{Prob}\left(z_{i, t}=1\right)=0.3$

Viterbi updates

the Viterbi algorithm is

$$
\begin{aligned}
& v_{0}(x)=-\log \pi_{x} \text { for all } x \\
& \text { for } t=0, \ldots, T-1 \\
& \qquad \mu_{t}(x)=\underset{u}{\operatorname{argmin}}\left(v_{t}(u)-\log \left(P_{u x} Q_{u, y_{t}}\right)\right) \\
& \quad v_{t+1}(x)=\min _{u}\left(v_{t}(u)-\log \left(P_{u x} Q_{u, y_{t}}\right)\right)
\end{aligned}
$$

- at every step

$$
v_{t}\left(x_{t}\right)-\log Q_{x_{t}, y_{t}}=-\log \left(\operatorname{Prob}\left(x_{0}, \ldots, x_{t}\right) \operatorname{Prob}\left(y_{0}, \ldots, y_{t} \mid x_{0}, \ldots, x_{t}\right)\right)
$$

- the x_{t} that maximizes this quantity is \hat{x}_{t}, the MAP estimate given y_{0}, \ldots, y_{t}
- $\mu_{t}\left(x_{t+1}\right)$ is the parent vertex of x_{t+1} along the shortest path

Viterbi computation

- simple implementation:
- measure y_{0}, \ldots, y_{t}
- compute v_{0}, \ldots, v_{t}
- compute \hat{x}_{t} by maximizing $v_{t}\left(x_{t}\right)-\log Q_{x_{t}, y_{t}}$
- follow parent links: $\hat{x}_{s}=\mu_{s}\left(\hat{x}_{s+1}\right)$ for $s=t-1, \ldots, 0$
- gives MAP estimate $\hat{x}_{0}, \ldots, \hat{x}_{t}$

Viterbi updates

- at time t, to compute $\hat{x}_{0}, \cdots \hat{x}_{t}$ we need v_{t} and $\mu_{0}, \ldots, \mu_{t-1}$
- these do not change over time, so we can reuse them at the next time-step
- this gives an on-line version of the Viterbi algorithm; at each time t
- measure y_{t}
- compute v_{t+1} and μ_{t} from v_{t} and y_{t}
- compute \hat{x}_{t} by maximizing $v_{t}\left(x_{t}\right)-\log Q_{x_{t}, y_{t}}$
- follow parent links to find $\hat{x}_{s}=\mu_{s}\left(\hat{x}_{s+1}\right)$ for $s=t-1, \ldots, 0$

