
EE365: Hitting Times
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Example: Inventory re-ordering

if we start in state C, how long before we re-order?

τE(x0, x1, . . . ) = min{t > 0 | xt ∈ E}

I τE is a random variable, called the first passage time or hitting time to set E

I τE is the earliest time when xt ∈ E

I we set E = {0, 1}
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Computing the distribution of first passage times
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replace states in E (in this case 0 and 1) with absorbing states
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hittings times to set E are the same for both chains
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Computing the distribution of first passage times

let Q be the transition matrix of the new chain
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for j ∈ E

Prob
(
τ{j}(x) = t |x0 = i

)
= (Qt)ij − (Qt−1)ij

i.e., conditioned on x0 = i,

Prob(t is the first time at which j is reached) =

Prob(j has been reached by time t)−Prob(j has been reached by time t− 1)
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Example: Inventory re-ordering

I how long before we re-order, given that we start fully stocked?

I plot shows Prob(τ{0,1} = t |x0 = 6) vs. t (mean is 13.1)
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