EE365: Hitting Times

Example: Inventory re-ordering

if we start in state C, how long before we re-order?

$$
\tau_{E}\left(x_{0}, x_{1}, \ldots\right)=\min \left\{t>0 \mid x_{t} \in E\right\}
$$

- τ_{E} is a random variable, called the first passage time or hitting time to set E
- τ_{E} is the earliest time when $x_{t} \in E$
- we set $E=\{0,1\}$

Computing the distribution of first passage times

replace states in E (in this case 0 and 1) with absorbing states

hittings times to set E are the same for both chains

Computing the distribution of first passage times

let Q be the transition matrix of the new chain

for $j \in E$

$$
\operatorname{Prob}\left(\tau_{\{j\}}(x)=t \mid x_{0}=i\right)=\left(Q^{t}\right)_{i j}-\left(Q^{t-1}\right)_{i j}
$$

i.e., conditioned on $x_{0}=i$,
$\operatorname{Prob}(t$ is the first time at which j is reached $)=$
$\operatorname{Prob}(j$ has been reached by time $t)-\operatorname{Prob}(j$ has been reached by time $t-1)$

Example: Inventory re-ordering

- how long before we re-order, given that we start fully stocked?
- plot shows $\operatorname{Prob}\left(\tau_{\{0,1\}}=t \mid x_{0}=6\right)$ vs. $t \quad$ (mean is 13.1)

