
EE266: Infinite Horizon Markov Decision Problems

Infinite horizon Markov decision problems

Infinite horizon dynamic programming

Example
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Infinite horizon Markov decision problems
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Infinite horizon Markov decision process

I (time-invariant) Markov decision process: xt+1 = f(xt, ut, wt)

I wt IID, independent of x0

I (time-invariant state-feedback) policy: ut = µ(xt)

I x0, x1, . . . is Markov

I closed-loop Markov chain: xt+1 = F (xt, wt) = f(xt, µ(xt), wt)
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Infinite horizon costs

I total cost:

Jtot = E

∞∑
t=0

g(xt, ut, wt) = lim
T→∞

E
T∑
t=0

g(xt, ut, wt)

I discounted infinite horizon:

Jdisc = E
∞∑
t=0

γtg(xt, ut, wt)

γ ∈ (0, 1) is the discount factor

I average stage cost:

Javg = lim
T→∞

E
1

T

T∑
t=0

g(xt, ut, wt)

(includes cost at absorption as special case)
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Infinite horizon costs

I let P be closed-loop transition matrix (which depends on µ)

I total cost (existence can depend on π0, g):

Jtot = π0

(
∞∑
t=0

P t
)
g

I discounted cost (always exists):

Jdisc = π0

(
∞∑
t=0

γtP t
)
g = π0 (I − γP )−1 g

I average cost (always exists):

Javg = π0

(
lim
T→∞

1

T

T∑
t=0

P t
)
g
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Infinite horizon Markov decision problems

I choose µ to minimize Jtot, Jdisc, or Javg

I data are π0, f , g, distribution of wt, and γ (for discounted case)
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Example: Stopping problem

I zt+1 = f(zt, wt) is a Markov chain on Z, with costs ghold, gstop : Z → R

I augment with a state called D (for DONE): X = Z ∪ {D}

I actions are U = {W,S} (WAIT and STOP)

I dynamics: D is absorbing (xt = D→ xt+1 = D); for xt = z ∈ Z,

xt+1 =

{
f(z, wt) ut = W
D ut = S

I stage cost: g(D, u) = 0; for x = z ∈ Z,

g(x, u) =

{
ghold(z) u = W
gstop(z) u = S

I minimize total cost Jtot

I optimal policy tells you whether to wait or stop at each z ∈ Z
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Infinite horizon dynamic programming
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Total cost: Value function

I define value function

V ?(x) = min
µ

E

(
∞∑
t=0

g(xt, ut, wt)

∣∣∣∣∣ x0 = x

)

with ut = µ(xt), xt+1 = f(xt, ut, wt)

I gives optimal cost, starting from state x at t = 0; can be infinite

I an optimal policy is

µ?(x) ∈ argmin
u

E (g(x, u, wt) + V ?(f(x, u, wt)))

I V ? is fixed point of Bellman operator:

V ?(x) = min
u

E (g(x, u, wt) + V ?(f(x, u, wt)))
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Total cost: Value iteration

I value iteration: set V0 = 0; for k = 0, 1, . . .

Vk+1(x) = min
u

E (g(x, u, wt) + Vk(f(x, u, wt)))

(k is an iteration counter, not time)

I define associated policy

µk(x) = argmin
u

E (g(x, u, wt) + Vk(f(x, u, wt)))

I Vk → V ?, in the absence of pathologies (ITAP)

I µk → µ? (more precisely, the total cost with µk converges to optimal)
(ITAP)
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Total cost: Value iteration

I interpretation:

I solve finite horizon problem over t = 0, . . . , k

I µk is the policy for t = 0 for the finite horizon problem
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Discounted cost: Value function

I define value function

V ?(x) = min
µ

E

(
∞∑
t=0

γtg(xt, ut, wt)

∣∣∣∣∣ x0 = x

)

with ut = µ(xt), xt+1 = f(xt, ut, wt)

I gives optimal cost, starting from state x at t = 0; sum always exists

I an optimal policy is

µ?(x) ∈ argmin
u

E (g(x, u, wt) + γV ?(f(x, u, wt)))

I V ? is fixed point of Bellman operator:

V ?(x) = min
u

E (g(x, u, wt) + γV ?(f(x, u, wt)))
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Discounted cost: Value iteration

I value iteration:

Vk+1(x) = min
u

E (g(x, u, wt) + γVk(f(x, u, wt)))

I converges to V ? always

I reason: Bellman operator

(T h)(x) = min
u

E (g(x, u, wt) + γh(f(x, u, wt)))

is a γ-contraction:

‖T (h)− T (h̃)‖∞ ≤ γ‖h− h̃‖∞
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Value iteration for average cost

I we start by defining value iteration: V0 = 0; for k = 0, 1, . . .,

Vk+1(x) = min
u

E (g(x, u, wt) + Vk(f(x, u, wt)))

I Vk are value functions for finite horizon total cost problem
(indexed in reverse order)

I Vk does not converge, but associated policy

µk(x) = argmin
u

E (g(x, u, wt) + Vk(f(x, u, wt)))

does converge, to an optimal policy for average cost problem, ITAP

I we have, as k →∞

Vk+1(x)− Vk(x)→ J? independent of x

total cost value function eventually increases by constant J? each step
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Average cost: Relative value function

I define relative value function iterate as

V rel
k (x) = Vk(x)− Vk(x′)

I x′ ∈ X is (an arbitrary) reference state: V rel
k (x′) = 0

I define relative value function as V rel = limk→∞ V
rel
k

I optimal policy is

µ?(x) = argmin
u

E
(
g(x, u, wt) + V rel(f(x, u, wt))

)
I V rel satisfies average cost Bellman equation

V rel(x) + J? = min
u

E
(
g(x, u, wt) + V rel(f(x, u, wt))

)
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Average cost: Relative value iteration

I (relative) value iteration for average cost problem:

Ṽk+1(x) = min
u

E
(
g(x, u, wt) + V rel

k (f(x, u, wt))
)

Jk+1(x) = Ṽk+1(x
′)

V rel
k+1(x) = Ṽk+1(x)− Jk+1

I V rel
k → V rel, Jk → J? as k →∞
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Summary

I value iteration: V0 = 0; for k = 0, 1, . . . ,

Vk+1(x) = min
u

E (g(x, u, wt) + Vk(f(x, u, wt)))

(multiply Vk by γ for discounted case)

I associated policy:

µk(x) = argmin
u

E (g(x, u, wt) + Vk(f(x, u, wt)))

I for all infinite horizon problems, simple value iteration works

I for total cost problem, Vk and µk converge to optimal, ITAP

I for discounted cost problem, Vk and µk converge to optimal

I for average cost problem, Vk does not converge, but µk does converge
to optimal, ITAP
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Example
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Example: Stopping problem

random walk on a 20× 20 grid, with three target states
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Example: Stopping problem

I transitions uniform to neighbors

I holding cost ghold(z) = 1

I stopping at a target state gives a payoff

gstop(z) =


−120 z = (5, 5)

−70 z = (17, 10)

−150 z = (10, 15)

0 otherwise
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Example: Stopping problem

value function
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Example: Stopping problem

optimal policy (red=STOP, white=WAIT)
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