EE365: More Information Patterns

 $\mathsf{Measuring}\ w \ \mathsf{and}\ x$

Measuring x and part of w

${\rm Measuring} \ w \ {\rm and} \ x$

DP for modified information pattern

- suppose w_t is known (as well as x_t) before u_t is chosen
- typical applications: action is chosen after current (random) price, cost, demand, congestion is revealed
- ▶ policy has form $u_t = \mu_t(x_t, w_t)$, $\mu_t : \mathcal{X}_t \times \mathcal{W}_t \to \mathcal{U}_t$
- can map this into our standard form, but it's more natural to modify DP to handle it directly

Optimal value function when w_t is known

define

$$v_t^{\star}(x) = \min_{\mu_t, \mu_{t+1}, \dots, \mu_{T-1}} \mathbf{E} \left(\sum_{\tau=t}^{T-1} g_{\tau}(x_{\tau}, u_{\tau}, w_{\tau}) + g_T(x_T) \right| x_t = x \right)$$

• minimization is over policies μ_t, \ldots, μ_{T-1} , functions of x and w

• subject to dynamics $x_{t+1} = f_t(x_t, u_t, w_t)$

• $v_t^*(x)$ is expected cost-to-go, using an optimal policy, if you are in state x at time t, before w_t is revealed

Dynamic programming for w_t known

• define
$$v_T^{\star}(x) := g_T(x)$$

• for $t = T - 1, \ldots, 0$,

• find optimal policy for time t in terms of v_{t+1}^{\star} :

$$\mu_t^{\star}(x, w) \in \underset{u}{\operatorname{argmin}} (g_t(x, u, w) + v_{t+1}^{\star}(f_t(x, u, w)))$$

▶ find v_t^* using μ_t^* :

$$v_t^{\star}(x) := \mathbf{E}\left(g_t(x, \mu_t^{\star}(x, w_t), w_t) + v_{t+1}^{\star}(f_t(x, \mu_t^{\star}(x, w_t), w_t))\right)$$

(expectation is over w_t)

▶ only need to store a value function on X_t , even though policy is a function on $X_t \times W_t$

Measuring x and part of w

DP for modified information pattern II

- suppose $w_t = (w_t^1, w_t^2)$ splits into independent components
- w_t^1 is known (as well as x_t) before u_t is chosen
- w_t^2 is not known before u_t is chosen
- ▶ policy has form $u_t = \mu_t(x_t, w_t^1)$, $\mu_t : \mathcal{X}_t \times \mathcal{W}_t^1 \to \mathcal{U}_t$
- can map this into our standard form, but it's more natural to modify DP to handle it directly

Optimal value function when w_t^1 **is known**

define

$$v_t^{\star}(x) = \min_{\mu_t, \mu_{t+1}, \dots, \mu_{T-1}} \mathbf{E} \left(\sum_{\tau=t}^{T-1} g_{\tau}(x_{\tau}, u_{\tau}, w_{\tau}) + g_T(x_T) \right| x_t = x \right)$$

• minimization is over policies μ_t, \ldots, μ_{T-1} , functions of x and w^1

• subject to dynamics $x_{t+1} = f_t(x_t, u_t, w_t)$

• $v_t^*(x)$ is expected cost-to-go, using an optimal policy, if you are in state x at time t, before w_t^1 is revealed

Dynamic programming for w_t^1 known

• define
$$v_T^{\star}(x) := g_T(x)$$

• for
$$t = T - 1, ..., 0$$
,

• find optimal policy for time t in terms of v_{t+1}^{\star} :

 $\mu_t^{\star}(x, w^1) \in \operatorname*{argmin}_u \mathbf{E}\left(g_t(x, u, (w^1, w_t^2)) + v_{t+1}^{\star}(f_t(x, u, (w^1, w_t^2)))\right)$

(expectation is over w_t^2)

▶ find v_t^* using μ_t^* :

 $v_t^{\star}(x) := \mathbf{E}\left(g_t(x, \mu_t^{\star}(x, w_t^1), w_t) + v_{t+1}^{\star}(f_t(x, \mu_t^{\star}(x, w_t^1), w_t))\right)$

(expectation is over w_t)

▶ only need to store a value function on X_t , even though policy is a function on $X_t \times W_t^1$