EE365: More Information Patterns

Measuring w and x

Measuring x and part of w

Measuring w and x

DP for modified information pattern

- suppose w_{t} is known (as well as x_{t}) before u_{t} is chosen
- typical applications: action is chosen after current (random) price, cost, demand, congestion is revealed
- policy has form $u_{t}=\mu_{t}\left(x_{t}, w_{t}\right), \mu_{t}: \mathcal{X}_{t} \times \mathcal{W}_{t} \rightarrow \mathcal{U}_{t}$
- can map this into our standard form, but it's more natural to modify DP to handle it directly

Optimal value function when w_{t} is known

- define

$$
v_{t}^{\star}(x)=\min _{\mu_{t}, \mu_{t+1}, \ldots, \mu_{T-1}} \mathbf{E}\left(\sum_{\tau=t}^{T-1} g_{\tau}\left(x_{\tau}, u_{\tau}, w_{\tau}\right)+g_{T}\left(x_{T}\right) \mid x_{t}=x\right)
$$

- minimization is over policies $\mu_{t}, \ldots, \mu_{T-1}$, functions of x and w
- subject to dynamics $x_{t+1}=f_{t}\left(x_{t}, u_{t}, w_{t}\right)$
- $v_{t}^{\star}(x)$ is expected cost-to-go, using an optimal policy, if you are in state x at time t, before w_{t} is revealed

Dynamic programming for w_{t} known

- define $v_{T}^{\star}(x):=g_{T}(x)$
- for $t=T-1, \ldots, 0$,
- find optimal policy for time t in terms of v_{t+1}^{\star} :

$$
\mu_{t}^{\star}(x, w) \in \underset{u}{\operatorname{argmin}}\left(g_{t}(x, u, w)+v_{t+1}^{\star}\left(f_{t}(x, u, w)\right)\right)
$$

- find v_{t}^{\star} using μ_{t}^{\star} :

$$
v_{t}^{\star}(x):=\mathbf{E}\left(g_{t}\left(x, \mu_{t}^{\star}\left(x, w_{t}\right), w_{t}\right)+v_{t+1}^{\star}\left(f_{t}\left(x, \mu_{t}^{\star}\left(x, w_{t}\right), w_{t}\right)\right)\right)
$$

(expectation is over w_{t})

- only need to store a value function on \mathcal{X}_{t}, even though policy is a function on $\mathcal{X}_{t} \times \mathcal{W}_{t}$

Measuring x and part of w

DP for modified information pattern II

- suppose $w_{t}=\left(w_{t}^{1}, w_{t}^{2}\right)$ splits into independent components
- w_{t}^{1} is known (as well as x_{t}) before u_{t} is chosen
- w_{t}^{2} is not known before u_{t} is chosen
- policy has form $u_{t}=\mu_{t}\left(x_{t}, w_{t}^{1}\right), \mu_{t}: \mathcal{X}_{t} \times \mathcal{W}_{t}^{1} \rightarrow \mathcal{U}_{t}$
- can map this into our standard form, but it's more natural to modify DP to handle it directly

Optimal value function when w_{t}^{1} is known

- define

$$
v_{t}^{\star}(x)=\min _{\mu_{t}, \mu_{t+1}, \ldots, \mu_{T-1}} \mathbf{E}\left(\sum_{\tau=t}^{T-1} g_{\tau}\left(x_{\tau}, u_{\tau}, w_{\tau}\right)+g_{T}\left(x_{T}\right) \mid x_{t}=x\right)
$$

- minimization is over policies $\mu_{t}, \ldots, \mu_{T-1}$, functions of x and w^{1}
- subject to dynamics $x_{t+1}=f_{t}\left(x_{t}, u_{t}, w_{t}\right)$
- $v_{t}^{\star}(x)$ is expected cost-to-go, using an optimal policy, if you are in state x at time t, before w_{t}^{1} is revealed

Dynamic programming for w_{t}^{1} known

- define $v_{T}^{\star}(x):=g_{T}(x)$
- for $t=T-1, \ldots, 0$,
- find optimal policy for time t in terms of v_{t+1}^{\star} :

$$
\mu_{t}^{\star}\left(x, w^{1}\right) \in \underset{u}{\operatorname{argmin}} \mathbf{E}\left(g_{t}\left(x, u,\left(w^{1}, w_{t}^{2}\right)\right)+v_{t+1}^{\star}\left(f_{t}\left(x, u,\left(w^{1}, w_{t}^{2}\right)\right)\right)\right)
$$

(expectation is over w_{t}^{2})

- find v_{t}^{\star} using μ_{t}^{\star} :

$$
v_{t}^{\star}(x):=\mathbf{E}\left(g_{t}\left(x, \mu_{t}^{\star}\left(x, w_{t}^{1}\right), w_{t}\right)+v_{t+1}^{\star}\left(f_{t}\left(x, \mu_{t}^{\star}\left(x, w_{t}^{1}\right), w_{t}\right)\right)\right)
$$

(expectation is over w_{t})

- only need to store a value function on \mathcal{X}_{t}, even though policy is a function on $\mathcal{X}_{t} \times \mathcal{W}_{t}^{1}$

