EE266 and MS&E251: Introduction

About the course
Optimization
Dynamical systems

Stochastic control

About the course

About the course

» EE266 is the same as MS&E251
» Formerly called EE365

created by Stephen Boyd, Sanjay Lall, and Ben Van Roy in 2012

v

taught by Sanjay Lall this year

v

Control

multi-step decision making, in an uncertain dynamic environment

v

» observe, act, observe, act, ...

» your current action affects the future

» there is uncertainty in what the effect of your action will be

v

goal is to find policy
» (computational) map from what you know to what you do

» called recourse or feedback, a richer concept than optimization

Applications

» multi-period investment
» automatic control

» supply chain optimization
» internet ad display

» revenue management

» operation of a smart grid

» data center operation

.and many, many others. What is the common abstraction?

Approach

» how to formulate and solve problems
» solution is usually an algorithm
» focus on ideas, not technicalities of corner cases

» similar style to ee263

v

practical homeworks with extensive coding

Dynamics

intellectual components

» observe: statistical inference
» decide: optimization

» repeat: dynamics, with uncertainty

this course focuses on the consequences of dynamics, specifically:

» dynamic programming

» for Markov decision processes

Prerequisites

» linear algebra (EE263 or MS&E211; more than Math 51)
» probability (EE178/278A or MS&E220)
» not dependencies, but may increase appreciation:

» other classes in control

» artificial intelligence, Markov chains, optimization

Curriculum

» MS&E251 in the MS core, and in decision and risk analysis
» EE&266 satisfies MS breadth, and in two depth sequences:

» control and system engineering

» dynamical systems and optimization

Administration

» the website ee266.stanford.edu
» piazza, coursework
» 70% final, 30% homework

» 24-hour take-home final exam

10

Books

» Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (online)

» Bertsekas, Dynamic Programming and Optimal Control, vol. 1

11

Optimization

12

Optimization problem

minimize f(z)
subjectto =z € X

» 1 is decision variable (discrete, continuous)

» X is constraint set

» f: X — R is objective (cost function)

» z is feasible if x € X

» z is optimal (or a solution) if f(z) = inf.cx f(2)

» f and X can depend on parameters (data)

» can maximize by minimizing — f (reward, utility, profit, ...)

» standard trick: allow f(z) = co (to embed further constraints in objective)

13

Solving optimization problems

» a solution method or algorithm computes a solution, given parameters

v

difficulty of solving optimization problem depends on

» mathematical properties of f, X

» problem size (e.g., dimension of x when z € R™)

v

a few problems can be solved ‘analytically’

» but this is not particularly relevant, since we adopt algorithmic approach

14

Examples

» find shortest path on weighted graph from node S to node T’
» x is path

» f(x) is weighted path length (sum of weights on edges)
» X is set of paths from S to T’

» allocate a total resource B among n entities to maximize total profit

x € R™ gives allocation
(maximize) objective f(x) =Y 1 | Pi(x:)
P;(x;) is profit of entity 7 given resource amount z;

X={z|z>0, 172 =B}

vV v.v Yy

15

Dynamical systems

16

(Deterministic) dynamical systems

Ter1 = fe(xe,ue), t=0,1,...

t is time (epoch, stage, period)

v

» x; € X, is state

» initial state x¢ is known or given

» us € U is input (action, decision, choice, control)
» fi: Xy X Uy — Xy is state transition function

» called time-invariant if f;, X%, U; don't depend on ¢

» variation: U; can depend on z:

17

Idea of state

» current action affects future states, but not current or past states
» current state depends on past actions
» state is link between past and future

» if you know state x; and actions uy,...,us—1, you know

» Ug,...,Ut—1 nhot relevant

» state is sufficient statistic (summary) for past

18

Examples (with finite state and input spaces)

discrete dynamical system:

» X ={1,...,n},U={1,...,m}

» fi: X XU — X called transition map, given by table (say)

moving on directed graph (V,€):

» X =V, U(x:) is set of out-going edges from x¢

» fi(ze,ur) = v, where up = (x4, v)

19

Examples (with infinite state and input spaces)

linear dynamical system:
» X =R", U =R"
> Ti11 = fe(xe,ur) = Avwy + Brug + ¢t

very special form for dynamics, but arises in many applications

20

Dynamic optimization (deterministic optimal control)

minimize J = ZtT:_Ol gt(ze, ue) + gr(zT)
subject to Ti41 :ft(xt,ut), tIO,...,T— 1

» initial state xg is given
» g X x Uy — RU{oo} is stage cost function
» g7 : Xr — RU {oo} is terminal cost function

» variables are x1,...,z7, uo,...,ur—1
(or just wo, ..., ur—1, since these determine z1,...,z7)

» just an optimization problem (possibly big)

» also called classical or open-loop control

21

Deterministic optimal control

» addresses dynamic effect of actions across time
» no uncertainty or randomness in model

» is widely used (often, by simply ignoring uncertainty in the application)

22

Stochastic control

23

Stochastic dynamical systems

Tt4+1 =ft(:rt,ut,wt), t=0,1,...

» w; are random variables (usually assumed independent for ¢ # s)
» state transitions are nondeterministic, uncertain

» choice of input u; determines distribution of x;41

» initial state o is random variable (usually assumed independent of wo, w1, . ..

24

Objective

» objective (to be minimized) is
T-1
J=E (Z ge(Te, ug, we) + gT($T7"~UT)>
t=0
> gt X X Uy x Wy — RU {oo} is stage cost function
» gr: Xr X Wr — RU {oo} is terminal cost function

» often g¢, gr don't depend on wy, i.e., stage and terminal costs are determin-
istic

» infinite values of g; encode constraints

» objective is mean total stage cost plus terminal cost

25

Information pattern constraints

» information pattern constraint: u; depends on what you know at time t
uy = ¢¢(Zt)
» 7 is what you know at time ¢

» (¢o,...,¢7—1) is called policy

v

goal is to find policy that minimizes J, subject to dynamics

26

Information patterns

v

full knowledge (prescient): Z; = (wo,...,wr—1)
» for each realization, reduces to deterministic optimal control problem
» no knowledge: Z; =)
» reduces to an optimization problem; called open-loop
» in between: Z; = x; (called state feedback)

» a little more: Z; = (w4, we)

these are very different problems!

27

Example: Stochastic shortest path

» move from node S to node T in directed weighted graph
» minimize expected total weight along path

» edge weights are random variables, independent in each time period

information patterns:

» no knowledge: commit to path beforehand
(knowing distributions of weights, but not actual values)

» full knowledge: weights on all edges at all times are revealed before path is
chosen

» local knowledge: at each node, at each time, weights of out-going edges are
revealed before next edge on path is chosen

28

Example: Optimal disposition of stock

» sell a total amount S of a stock in T periods
» price (and transaction cost) varies randomly

» maximize expected revenue

information patterns:

» no knowledge: commit to sales amounts beforehand

» in each time period, the price and transaction cost is known before amount

sold is chosen

29

