EE365: Linear Exponential Quadratic Regulator

Linear exponential quadratic regulator

Solution via dynamic programming

Example

Derivation of DP for LEQR

Linear exponential quadratic regulator

Linear dynamics, quadratic costs

- linear dynamics: $x_{t+1}=A_{t} x_{t}+B_{t} u_{t}+w_{t}$
- $w_{t} \sim \mathcal{N}\left(0, W_{t}\right), x_{0} \sim \mathcal{N}\left(0, X_{0}\right)$ (yes, they need to be Gaussian)
- $x_{0}, w_{0}, \ldots, w_{T-1}$ independent
- stage cost is (convex quadratic)

$$
g_{t}(x, u)=(1 / 2)\left(x^{T} Q_{t} x+u^{T} R_{t} u\right)
$$

with $Q_{t} \geq 0, R_{t}>0$

- terminal cost $g_{T}(x)=(1 / 2) x^{T} Q_{T} x, Q_{T} \geq 0$
- cost $C=\sum_{t=0}^{T-1} g_{t}\left(x_{t}, u_{t}\right)+g_{T}\left(x_{T}\right)$
- state feedback: $u_{t}=\mu_{t}\left(x_{t}\right), t=0, \ldots, T-1$

Linear exponential quadratic regulator

- exponential risk aversion cost

$$
J=\frac{1}{\gamma} \log \mathbf{E} \exp \gamma C=R_{\gamma}(C)
$$

with $\gamma>0$

- LEQR problem: choose policy $\mu_{0}, \ldots, \mu_{T-1}$ to minimize J
- reduces to LQR problem as $\gamma \rightarrow 0$
- for γ too large, $J=\infty$ for all policies ('neurotic breakdown')

Solution via dynamic programming

Generic risk averse dynamic programming

- optimal policy μ^{\star} is

$$
\mu_{t}^{\star}(x) \in \underset{u}{\operatorname{argmin}}\left(g_{t}(x, u)+R_{\gamma} V_{t+1}\left(f_{t}\left(x, u, w_{t}\right)\right)\right)
$$

where expectation in R_{γ} is over w_{t}

- (backward) recursion for V_{t} :

$$
V_{t}(x)=\min _{u}\left(g_{t}(x, u)+R_{\gamma} V_{t+1}\left(f_{t}\left(x, u, w_{t}\right)\right)\right)
$$

DP for LEQR

we will see that

- V_{t} are convex quadratic (with no linear term):

$$
V_{t}(x)=(1 / 2)\left(x^{T} P_{t} x+r_{t}\right)
$$

with $P_{t} \geq 0$

- optimal policy is linear: $\mu_{t}^{\star}(x)=K_{t} x$ (so x_{t}, u_{t} are Gaussian)
- $J=\infty$ for $\gamma \geq \gamma^{\text {crit }}$ ('neurotic breakdown')

Modified Riccati recursion

- modified Riccati recursion:

$$
\begin{aligned}
\tilde{P}_{t+1} & =P_{t+1}+\gamma P_{t+1}\left(W_{t}^{-1}-\gamma P_{t+1}\right)^{-1} P_{t+1} \\
K_{t} & =-\left(R_{t}+B_{t}^{T} \tilde{P}_{t+1} B_{t}\right)^{-1} B_{t}^{T} \tilde{P}_{t+1} A_{t} \\
r_{t} & =r_{t+1}-(1 / \gamma) \log \operatorname{det}\left(I-\gamma P_{t+1} W_{t}\right) \\
P_{t} & =Q_{t}+K_{t}^{T} R_{t} K^{t}+\left(A_{t}+B_{t} K_{t}\right)^{T} \tilde{P}_{t+1}\left(A_{t}+B_{t} K_{t}\right)
\end{aligned}
$$

- neurotic breakdown occurs if $W_{t}^{-1}-\gamma P_{t+1} \ngtr 0$ for any t
- as $\gamma \rightarrow 0, \tilde{P}_{t+1} \rightarrow P_{t+1}$ and

$$
-(1 / \gamma) \log \operatorname{det}\left(I-\gamma P_{t+1} W_{t}\right) \rightarrow \operatorname{Tr} P_{t+1} W_{t}
$$

and we recover the standard (LQR) Riccati recursion

- as in LQR, r_{t} keeps track of cost, doesn't affect policy

Example

LEQR example

- dynamics and actuators:

- $Q_{0}=\cdots=Q_{T-1}=0, Q_{T}=e_{n} e_{n}^{T}$
- $R_{0}=\cdots=R_{T-1}$ diagonal with increasing values on diagonal
- $W_{0}=\cdots=W_{T-1}$ diagonal with decreasing values on diagonal
- $X_{0}=I$

LEQR example

γ	$\mathbf{E} C$	$\boldsymbol{\operatorname { s t d }} C$	$R_{0}(C)$	$R_{1.25}(C)$	$R_{2.00}(C)$
0.00	0.3202	0.3866	$\mathbf{0 . 3 2 0 2}$	0.5106	1.0616
1.25	0.3347	0.3543	0.3347	$\mathbf{0 . 4 7 4 0}$	0.7918
2.00	0.3858	0.3475	0.3885	0.5099	$\mathbf{0 . 7 3 5 3}$

LEQR example

feedback gain: $\gamma=0, \gamma=1.2, \gamma=2.0$

LEQR example

sample realization (state): $\gamma=0, \gamma=1.2, \gamma=2.0$

LEQR example

sample realization (input): $\gamma=0, \gamma=1.2, \gamma=2.0$

LEQR example

cost histogram

LEQR example

cost histogram (tails)

Derivation of DP for LEQR

Expectation of exponential of quadratic of Gaussian

- suppose $z \sim \mathcal{N}(\bar{z}, Z), P>0$
- $\mathbf{E}(1 / 2) z^{T} P z=(1 / 2) \operatorname{Tr} P Z$
- let $J=R_{\gamma}\left(z^{T} P z / 2\right)=\frac{1}{\gamma} \log \mathbf{E} \exp (\gamma / 2) z^{T} P z$
- then $J=\infty$ if $Z^{-1} \ngtr \gamma P$
- when $Z^{-1}>\gamma P$,

$$
J=\frac{1}{2}\left(\bar{z}^{T} \tilde{P} \bar{z}-(1 / \gamma) \log \operatorname{det}(I-\gamma P Z)\right)
$$

where $\tilde{P}=P+\gamma P\left(Z^{-1}-\gamma P\right)^{-1} P$

- as $\gamma \rightarrow 0, \tilde{P} \rightarrow P, J \rightarrow(1 / 2) \operatorname{Tr} P Z$

Derivation

- to get formula above start with integral

$$
\mathbf{E} \exp (\gamma / 2) z^{T} P z=\frac{1}{(2 \pi)^{n / 2}(\operatorname{det} Z)^{1 / 2}} \int e^{\gamma x^{T} P x / 2} e^{-(x-\bar{z})^{T} Z^{-1}(x-\bar{z}) / 2} d x
$$

- simplify integrand, complete squares, and use

$$
\frac{1}{(2 \pi)^{n / 2}(\operatorname{det} \Sigma)^{1 / 2}} \int e^{-(x-\mu)^{T} \Sigma^{-1}(x-\mu) / 2} d x=1
$$

to get formula above

Limit

For any $Z \in \mathbb{R}^{n \times n}$

$$
\lim _{\gamma \rightarrow 0}-\frac{1}{\gamma} \log \operatorname{det}(I-\gamma Z)=\operatorname{Tr}(Z)
$$

let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of Z, then

$$
\begin{aligned}
-\frac{1}{t} \log \operatorname{det}(I-t Z) & =-\frac{1}{t} \log \prod_{i=1}^{n}\left(1-t \lambda_{i}\right)=-\frac{1}{t} \sum_{i=1}^{n} \log \left(1-t \lambda_{i}\right) \\
& =\frac{1}{t} \sum_{i=1}^{n} \sum_{k=1}^{\infty} \frac{1}{k}\left(t \lambda_{i}\right)^{k} \\
& =\sum_{k=1}^{\infty} \frac{1}{k} \sum_{i=1}^{n} \lambda_{i}^{k} t^{k-1} \\
& =\sum_{k=0}^{\infty}\left(\frac{1}{k+1} \sum_{i=1}^{n} \lambda_{i}^{k+1}\right) t^{k}
\end{aligned}
$$

as $t \rightarrow 0$, we are left with the term corresponding to $k=0$

$$
\lim _{t \rightarrow \infty}-\frac{1}{t} \log \operatorname{det}(I-t Z)=\sum_{i=1}^{n} \lambda_{i}=\operatorname{Tr}(Z)
$$

Derivation of DP for LEQR

- proof by induction: suppose $V_{t+1}(x)=(1 / 2)\left(x^{T} P_{t+1} x+r_{t+1}\right)$
- we need to minimize over u

$$
\begin{aligned}
& g_{t}(x, u)+R_{\gamma}\left(V_{t+1}\left(f_{t}\left(x, u, w_{t}\right)\right)\right) \\
& =(1 / 2)\left(x^{T} Q_{t} x+u^{T} R_{t} u\right) \\
& \quad+R_{\gamma}\left((1 / 2)\left(\left(A_{t} x+B_{t} u+w_{t}\right)^{T} P_{t+1}\left(A_{t} x+B_{t} u+w_{t}\right)+r_{t+1}\right)\right)
\end{aligned}
$$

- same as minimizing

$$
(1 / 2) u^{T} R_{t} u+R_{\gamma}\left((1 / 2) z^{T} P_{t+1} z\right)
$$

where $z \sim \mathcal{N}\left(A_{t} x+B_{t} u, W_{t}\right)$

Derivation of DP for LEQR

- using formula for $R_{\gamma}\left((1 / 2) z^{T} P_{t+1} z\right)$ above, need to minimize over u

$$
\frac{1}{2}\left(u^{T} R_{t} u+\left(A_{t} x+B_{t} u\right)^{T} \tilde{P}\left(A_{t} x+B_{t} u\right)-(1 / \gamma) \log \operatorname{det}(I-\gamma Z P)\right)
$$

where $\tilde{P}=P+\gamma P\left(Z^{-1}-\gamma P\right)^{-1} P$

- this expression is ∞ if $Z^{-1} \ngtr \gamma P$
- otherwise: last term is constant, so

$$
\mu_{t}^{\star}(x)=-\left(R_{t}+B_{t}^{T} \tilde{P}_{t+1} B_{t}\right)^{-1} B_{t}^{T} \tilde{P}_{t+1} A_{t} x
$$

- adding back in constant terms to get V_{t}, we get modified Riccati recursion given above

