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Continuous state Markov decision problem

» dynamics: z¢41 = fe(ze, ue, we)
» xo,wo, Wi, ... independent
» stage cost: g:(xt,ut, wr)
» state feedback policy: us = pe ()
» choose policy to minimize
T—1
J=E (Z gt (T, g, we) +gT(mT)>
t=0

» we consider the case X = R", U/ = R™



Continuous state Markov decision problem

» many (mostly mathematical) pathologies can occur in this case
» but not in the special case we'll consider

» a basic issue: how do you even represent the functions f;, g¢, and p;?
» for n and m very small (say, 2 or 3) we can use gridding

> we can give the coefficients in some (dense) basis of functions

» most generally, we assume we have a method to compute function val-
ues, given the arguments

» exponential growth that occurs in gridding called curse of dimensionality



Continuous state Markov decision problem: Dynamic programming

» set vr(z) = gr(z)
» fort=T-1,...,0
pe(x) € argmin E (g¢ (2, u, we) + vipr (fe(, u, we)))

ve(z) = E (9¢(2, e (), we) + veia (fo (@, pe(2), w1)))

» this gives value functions and optimal policy, in principle only

» but you can’t in general represent, much less compute, v; or p



Continuous state Markov decision problem: Dynamic programming

for DP to be tractable, f; and g: need to have special form for which we can

» represent v, iy in some tractable way

» carry out expectation and minimization in DP recursion

one of the few situations where this holds: linear quadratic problems

» f+ is an affine function of x¢, u; (‘linear dynamical system’)

» g: are convex quadratic functions of z¢, us



Linear quadratic problems

for linear quadratic problems

» value functions v; are quadratic
» hence representable by their coefficients

» we can carry out the expectation and the minimization in DP recursion ex-
plicitly using linear algebra

» optimal policy functions are affine: u}(z) = Kz + 1

» we can compute the coefficients K; and I; explicitly

in other words:
we can solve linear quadratic stochastic control problems in practice



Affine and quadratic functions



Affine functions

» f:RP — R is affine if it has the form
flz)=Az+b
i.e., it is a linear function plus a constant
» a linear function is special case, with b =0

» affine functions closed under sum, scalar multiplication, composition
(with explicit formulas for coefficients in each case)



Quadratic function

» f:R"™ — R is quadratic if it has the form
f(x)=3a"Pr+q '+ ir
with P = PT € R"*" (the 1 on r is for convenience)

» often write as quadratic form in (z,1):

» special cases:

» quadratic form: ¢ =0, r =0
» affine (linear) function: P =0 (P =0, r=0)
» constant: P=0,¢=0

» uniqueness: f(a:):f(m) & P=P g=§ r=7
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Calculus of quadratic functions

» quadratic functions on R™ form a vector space of dimension

n(n+1)

5 +n+1

» i.e., they are closed under addition, scalar multiplication
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Composition of quadratic and affine functions

» suppose

» f(2) = 32" Pz+q 2+ ir is quadratic function on R™

» g(z) = Az + b is affine function from R" into R™

then composition h(z) = (f o g)(z) = f(Az + b) is quadratic

Tl D

» so matrix multiplication gives us the coefficient matrix of h

v

v

write h(x) as
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Convexity and nonnegativity of a quadratic function

» [ is convex (graph does not curve down) if and only if P > 0 (matrix in-
equality)
» f is strictly convex (graph curves up) if and only if P > 0 (matrix inequality)

» [ is nonnegative (i.e., f(z) > 0 for all z) if and only if

P q
>
LIT T]*O

» f(x) > 0if and only if matrix inequality is strict

» nonnegative = convex
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Checking convexity and nonnegativity

» we can check convexity or nonnegativity in O(n®) operations by eigenvalue
decomposition, Cholesky factorization, ...

» composition with affine function preserves convexity, nonnegativity:

f convex, g affine = f o g convex

» linear combination of convex quadratics, with nonnegative coefficients, is con-
vex quadratic

» if f(z,w) is convex quadratic in  for each w (a random variable) then
9(@) = B f(z,w)

is convex quadratic (i.e., convex quadratics closed under expectation)
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Minimizing a quadratic

» if f is not convex, then min, f(x) = -0
» otherwise,  minimizes f if and only if Vf(z) = Pz +¢q=0
» for ¢ & range(P), min, f(z) = —oc0

1

» for P > 0, unique minimizer is x = —P ™ 'q

» minimum value is 1 )
min f(z) = —=q¢' P 'q+ =r
@ 2 2
(a concave quadratic function of ¢)

» for case P > 0, q € range(P), replace P~' with P?
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Partial minimization of a quadratic

» suppose f is a quadratic function of (z,u), convex in u
» then the partial minimization function
9(x) = min f(z,u)
is a quadratic function of x; if f is convex, so is g
» the minimizer argmin, f(z,u) is an affine function of

» minimizing a convex quadratic function over some variables yields a convex
quadratic function of the remaining ones

» i.e., convex quadratics closed under partial minimization
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Partial minimization of a quadratic

» let's take .
Pex Pru qf [

BE
f(m,u) == |u Puz Py qu u
2 T T
1 9% g 7T |1

with Puy > 0, Pus = PJ,
» minimizer of f over u satisfies
0= Vuf(w,u) = Puuu + Puzx + qu

so u = — P} (Puzx + qu) is an affine function of z
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Partial minimization of a quadratic

» substituting u into expression for f gives

() = L ! Pro — PouPo Puz  qo — PouPol qu] [
g N 2 [1 Q;— - quu_ulpusc r— QIPu_ulih 1

» P.o — P Pol Py is the Schur complement of P w.r.t. u
» Poy — Pou Pyl Puz >0if P >0

» or simpler: g is composition of f with affine function z — (z,u)

T 1 0
o= L) [

» we already know how to form composition quadratic (affine), and the result
is convex
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Summary

convex quadratics are closed under

» addition
» expectation
» pre-composition with an affine function

» partial minimization

in each case, we can explicitly compute the coefficients of the result using linear

algebra
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Linear quadratic Markov decision process
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(Random) linear dynamical system

» dynamics zi41 = fe(e, ue, we) = Ag(we)ze + Be(we)ue + ce(we)
» for each wy, f; is affine in (¢, ut)

» xo,Wwo, Wi, ... are independent

» Ai(we) € R™*™ is dynamics matrix

» Bi(wy) € R™™ is input matrix

» ci(w) € R™ is offset
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Linear quadratic stochastic control problem

» stage cost g¢(x+, us, wy) is convex quadratic in (x4, us) for each wy

» choose policy u: = p¢(z+) to minimize objective

J=E (Z ge(@e, ug, we) + 9T($T)>

t=0
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Dynamic programming

» set vr(z) = gr(z)
» fort=T-1,...,0,
pe(x) € argmin E (gu(x, u, we) + v (fo(@, u, we)))

ve(z) = E (9¢(2, e (), we) + veia (fo (@, pe(2), w1)))

» all v, are convex quadratic, and all u; are affine

» this gives value functions and optimal policy, explicitly
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Dynamic programming

we show v; are convex quadratic by (backward) induction

>

>

>

suppose vr, ..., V41 are convex quadratic

since f; is affine in (z,u), veg1(fe(x,u, w)) is convex quadratic

50 g¢(, u, we) + veg1 (fe(z,u, wye)) is convex quadratic

and so is its expectation over w;

partial minimization over u leaves convex quadratic of z, which is v:(x)

argmin is affine function of z, so optimal policy is affine
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Linear equality constraints

» can add (deterministic) linear equality constraints on x¢, us into g¢, gr:

0 If Ftiﬁ-‘rGtU: ht

quad(
oo otherwise

gf(mvuﬂw):gt .'I?,’LL,'LU)"’

» everything still works:

» v is convex quadratic, possibly with equality constraints

» ¢ is affine

» reason: minimizing a convex quadratic over some variables, subject to equality
constraints, yields a convex quadratic in remaining variables
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