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Continuous state Markov decision problem

I dynamics: xt+1 = ft(xt, ut, wt)

I x0, w0, w1, . . . independent

I stage cost: gt(xt, ut, wt)

I state feedback policy: ut = µt(xt)

I choose policy to minimize

J = E

(
T−1∑
t=0

gt(xt, ut, wt) + gT (xT )

)

I we consider the case X = Rn, U = Rm
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Continuous state Markov decision problem

I many (mostly mathematical) pathologies can occur in this case

I but not in the special case we’ll consider

I a basic issue: how do you even represent the functions ft, gt, and µt?

I for n and m very small (say, 2 or 3) we can use gridding

I we can give the coefficients in some (dense) basis of functions

I most generally, we assume we have a method to compute function val-
ues, given the arguments

I exponential growth that occurs in gridding called curse of dimensionality
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Continuous state Markov decision problem: Dynamic programming

I set vT (x) = gT (x)

I for t = T − 1, . . . , 0

µt(x) ∈ argmin
u

E (gt(x, u, wt) + vt+1(ft(x, u, wt)))

vt(x) = E (gt(x, µt(x), wt) + vt+1(ft(x, µt(x), wt)))

I this gives value functions and optimal policy, in principle only

I but you can’t in general represent, much less compute, vt or µt
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Continuous state Markov decision problem: Dynamic programming

for DP to be tractable, ft and gt need to have special form for which we can

I represent vt, µt in some tractable way

I carry out expectation and minimization in DP recursion

one of the few situations where this holds: linear quadratic problems

I ft is an affine function of xt, ut (‘linear dynamical system’)

I gt are convex quadratic functions of xt, ut
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Linear quadratic problems

for linear quadratic problems

I value functions v?t are quadratic

I hence representable by their coefficients

I we can carry out the expectation and the minimization in DP recursion ex-
plicitly using linear algebra

I optimal policy functions are affine: µ?
t (x) = Ktx+ lt

I we can compute the coefficients Kt and lt explicitly

in other words:
we can solve linear quadratic stochastic control problems in practice
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Affine and quadratic functions
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Affine functions

I f : Rp → Rq is affine if it has the form

f(x) = Ax+ b

i.e., it is a linear function plus a constant

I a linear function is special case, with b = 0

I affine functions closed under sum, scalar multiplication, composition
(with explicit formulas for coefficients in each case)
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Quadratic function

I f : Rn → R is quadratic if it has the form

f(x) = 1
2
xTPx+ qTx+ 1

2
r

with P = PT ∈ Rn×n (the 1
2

on r is for convenience)

I often write as quadratic form in (x, 1):

f(x) =
1

2

[
x
1

]T [
P q

qT r

] [
x
1

]
I special cases:

I quadratic form: q = 0, r = 0

I affine (linear) function: P = 0 (P = 0, r = 0)

I constant: P = 0, q = 0

I uniqueness: f(x) = f̃(x) ⇐⇒ P = P̃ , q = q̃, r = r̃
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Calculus of quadratic functions

I quadratic functions on Rn form a vector space of dimension

n(n+ 1)

2
+ n+ 1

I i.e., they are closed under addition, scalar multiplication
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Composition of quadratic and affine functions

I suppose

I f(z) = 1
2
zTPz + qTz + 1

2
r is quadratic function on Rm

I g(x) = Ax+ b is affine function from Rn into Rm

I then composition h(x) = (f ◦ g)(x) = f(Ax+ b) is quadratic

I write h(x) as

1

2

[
x
1

]T([
A b
0 1

]T [
P q

qT r

] [
A b
0 1

])[
x
1

]

I so matrix multiplication gives us the coefficient matrix of h
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Convexity and nonnegativity of a quadratic function

I f is convex (graph does not curve down) if and only if P ≥ 0 (matrix in-
equality)

I f is strictly convex (graph curves up) if and only if P > 0 (matrix inequality)

I f is nonnegative (i.e., f(x) ≥ 0 for all x) if and only if[
P q

qT r

]
≥ 0

I f(x) > 0 if and only if matrix inequality is strict

I nonnegative ⇒ convex
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Checking convexity and nonnegativity

I we can check convexity or nonnegativity in O(n3) operations by eigenvalue
decomposition, Cholesky factorization, . . .

I composition with affine function preserves convexity, nonnegativity:

f convex, g affine =⇒ f ◦ g convex

I linear combination of convex quadratics, with nonnegative coefficients, is con-
vex quadratic

I if f(x,w) is convex quadratic in x for each w (a random variable) then

g(x) = E
w
f(x,w)

is convex quadratic (i.e., convex quadratics closed under expectation)
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Minimizing a quadratic

I if f is not convex, then minx f(x) = −∞

I otherwise, x minimizes f if and only if ∇f(x) = Px+ q = 0

I for q 6∈ range(P ), minx f(x) = −∞

I for P > 0, unique minimizer is x = −P−1q

I minimum value is

min
x
f(x) = −1

2
qTP−1q +

1

2
r

(a concave quadratic function of q)

I for case P ≥ 0, q ∈ range(P ), replace P−1 with P †
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Partial minimization of a quadratic

I suppose f is a quadratic function of (x, u), convex in u

I then the partial minimization function

g(x) = min
u
f(x, u)

is a quadratic function of x; if f is convex, so is g

I the minimizer argminu f(x, u) is an affine function of x

I minimizing a convex quadratic function over some variables yields a convex
quadratic function of the remaining ones

I i.e., convex quadratics closed under partial minimization
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Partial minimization of a quadratic

I let’s take

f(x, u) =
1

2

xu
1

T Pxx Pxu qx
Pux Puu qu
qTx qTu r

xu
1


with Puu > 0, Pux = PT

xu

I minimizer of f over u satisfies

0 = ∇uf(x, u) = Puuu+ Puxx+ qu

so u = −P−1
uu (Puxx+ qu) is an affine function of x
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Partial minimization of a quadratic

I substituting u into expression for f gives

g(x) =
1

2

[
x
1

]T [
Pxx − PxuP

−1
uu Pux qx − PxuP

−1
uu qu

qTx − qTuP−1
uu Pux r − qTuP−1

uu qu

] [
x
1

]

I Pxx − PxuP
−1
uu Pux is the Schur complement of P w.r.t. u

I Pxx − PxuP
−1
uu Pux ≥ 0 if P ≥ 0

I or simpler: g is composition of f with affine function x 7→ (x, u)[
x
u

]
=

[
I

−P−1
uu Pux

]
x+

[
0

−P−1
uu qu

]
I we already know how to form composition quadratic (affine), and the result

is convex
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Summary

convex quadratics are closed under

I addition

I expectation

I pre-composition with an affine function

I partial minimization

in each case, we can explicitly compute the coefficients of the result using linear
algebra
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Linear quadratic Markov decision process
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(Random) linear dynamical system

I dynamics xt+1 = ft(xt, ut, wt) = At(wt)xt +Bt(wt)ut + ct(wt)

I for each wt, ft is affine in (xt, ut)

I x0, w0, w1, . . . are independent

I At(wt) ∈ Rn×n is dynamics matrix

I Bt(wt) ∈ Rn×m is input matrix

I ct(wt) ∈ Rn is offset
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Linear quadratic stochastic control problem

I stage cost gt(xt, ut, wt) is convex quadratic in (xt, ut) for each wt

I choose policy ut = µt(xt) to minimize objective

J = E

(
T−1∑
t=0

gt(xt, ut, wt) + gT (xT )

)
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Dynamic programming

I set vT (x) = gT (x)

I for t = T − 1, . . . , 0,

µt(x) ∈ argmin
u

E (gt(x, u, wt) + vt+1(ft(x, u, wt)))

vt(x) = E (gt(x, µt(x), wt) + vt+1(ft(x, µt(x), wt)))

I all vt are convex quadratic, and all µt are affine

I this gives value functions and optimal policy, explicitly
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Dynamic programming

we show vt are convex quadratic by (backward) induction

I suppose vT , . . . , vt+1 are convex quadratic

I since ft is affine in (x, u), vt+1(ft(x, u, wt)) is convex quadratic

I so gt(x, u, wt) + vt+1(ft(x, u, wt)) is convex quadratic

I and so is its expectation over wt

I partial minimization over u leaves convex quadratic of x, which is vt(x)

I argmin is affine function of x, so optimal policy is affine
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Linear equality constraints

I can add (deterministic) linear equality constraints on xt, ut into gt, gT :

gt(x, u, w) = gquadt (x, u, w) +

{
0 if Ftx+Gtu = ht

∞ otherwise

I everything still works:

I vt is convex quadratic, possibly with equality constraints

I µt is affine

I reason: minimizing a convex quadratic over some variables, subject to equality
constraints, yields a convex quadratic in remaining variables
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