EE365: Linear Quadratic Stochastic Control

Continuous state Markov decision process

Affine and quadratic functions

Linear quadratic Markov decision process

Continuous state Markov decision process

Continuous state Markov decision problem

- dynamics: $x_{t+1}=f_{t}\left(x_{t}, u_{t}, w_{t}\right)$
- $x_{0}, w_{0}, w_{1}, \ldots$ independent
- stage cost: $g_{t}\left(x_{t}, u_{t}, w_{t}\right)$
- state feedback policy: $u_{t}=\mu_{t}\left(x_{t}\right)$
- choose policy to minimize

$$
J=\mathbf{E}\left(\sum_{t=0}^{T-1} g_{t}\left(x_{t}, u_{t}, w_{t}\right)+g_{T}\left(x_{T}\right)\right)
$$

- we consider the case $\mathcal{X}=\mathbb{R}^{n}, \mathcal{U}=\mathbb{R}^{m}$

Continuous state Markov decision problem

- many (mostly mathematical) pathologies can occur in this case
- but not in the special case we'll consider
- a basic issue: how do you even represent the functions f_{t}, g_{t}, and μ_{t} ?
- for n and m very small (say, 2 or 3) we can use gridding
- we can give the coefficients in some (dense) basis of functions
- most generally, we assume we have a method to compute function values, given the arguments
- exponential growth that occurs in gridding called curse of dimensionality

Continuous state Markov decision problem: Dynamic programming

$-\operatorname{set} v_{T}(x)=g_{T}(x)$

- for $t=T-1, \ldots, 0$

$$
\begin{aligned}
& \mu_{t}(x) \in \underset{u}{\operatorname{argmin}} \mathbf{E}\left(g_{t}\left(x, u, w_{t}\right)+v_{t+1}\left(f_{t}\left(x, u, w_{t}\right)\right)\right) \\
& v_{t}(x)=\mathbf{E}\left(g_{t}\left(x, \mu_{t}(x), w_{t}\right)+v_{t+1}\left(f_{t}\left(x, \mu_{t}(x), w_{t}\right)\right)\right)
\end{aligned}
$$

- this gives value functions and optimal policy, in principle only
- but you can't in general represent, much less compute, v_{t} or μ_{t}

Continuous state Markov decision problem: Dynamic programming

for DP to be tractable, f_{t} and g_{t} need to have special form for which we can

- represent v_{t}, μ_{t} in some tractable way
- carry out expectation and minimization in DP recursion
one of the few situations where this holds: linear quadratic problems
- f_{t} is an affine function of x_{t}, u_{t} ('linear dynamical system')
- g_{t} are convex quadratic functions of x_{t}, u_{t}

Linear quadratic problems

for linear quadratic problems

- value functions v_{t}^{\star} are quadratic
- hence representable by their coefficients
- we can carry out the expectation and the minimization in DP recursion explicitly using linear algebra
- optimal policy functions are affine: $\mu_{t}^{\star}(x)=K_{t} x+l_{t}$
- we can compute the coefficients K_{t} and l_{t} explicitly
in other words:
we can solve linear quadratic stochastic control problems in practice

Affine and quadratic functions

Affine functions

- $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is affine if it has the form

$$
f(x)=A x+b
$$

i.e., it is a linear function plus a constant

- a linear function is special case, with $b=0$
- affine functions closed under sum, scalar multiplication, composition (with explicit formulas for coefficients in each case)

Quadratic function

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is quadratic if it has the form

$$
f(x)=\frac{1}{2} x^{\top} P x+q^{\top} x+\frac{1}{2} r
$$

with $P=P^{\top} \in \mathbb{R}^{n \times n}$ (the $\frac{1}{2}$ on r is for convenience)

- often write as quadratic form in $(x, 1)$:

$$
f(x)=\frac{1}{2}\left[\begin{array}{l}
x \\
1
\end{array}\right]^{\top}\left[\begin{array}{ll}
P & q \\
q^{\top} & r
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right]
$$

- special cases:
- quadratic form: $q=0, r=0$
- affine (linear) function: $P=0(P=0, r=0)$
- constant: $P=0, q=0$
- uniqueness: $f(x)=\tilde{f}(x) \Longleftrightarrow P=\tilde{P}, q=\tilde{q}, r=\tilde{r}$

Calculus of quadratic functions

- quadratic functions on \mathbb{R}^{n} form a vector space of dimension

$$
\frac{n(n+1)}{2}+n+1
$$

- i.e., they are closed under addition, scalar multiplication

Composition of quadratic and affine functions

- suppose
- $f(z)=\frac{1}{2} z^{\top} P z+q^{\top} z+\frac{1}{2} r$ is quadratic function on \mathbb{R}^{m}
- $g(x)=A x+b$ is affine function from \mathbb{R}^{n} into \mathbb{R}^{m}
- then composition $h(x)=(f \circ g)(x)=f(A x+b)$ is quadratic
- write $h(x)$ as

$$
\frac{1}{2}\left[\begin{array}{l}
x \\
1
\end{array}\right]^{\top}\left(\left[\begin{array}{cc}
A & b \\
0 & 1
\end{array}\right]^{\top}\left[\begin{array}{cc}
P & q \\
q^{\top} & r
\end{array}\right]\left[\begin{array}{cc}
A & b \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
1
\end{array}\right]
$$

- so matrix multiplication gives us the coefficient matrix of h

Convexity and nonnegativity of a quadratic function

- f is convex (graph does not curve down) if and only if $P \geq 0$ (matrix inequality)
- f is strictly convex (graph curves up) if and only if $P>0$ (matrix inequality)
- f is nonnegative (i.e., $f(x) \geq 0$ for all x) if and only if

$$
\left[\begin{array}{cc}
P & q \\
q^{\top} & r
\end{array}\right] \geq 0
$$

- $f(x)>0$ if and only if matrix inequality is strict
- nonnegative \Rightarrow convex

Checking convexity and nonnegativity

- we can check convexity or nonnegativity in $O\left(n^{3}\right)$ operations by eigenvalue decomposition, Cholesky factorization, ...
- composition with affine function preserves convexity, nonnegativity:

$$
f \text { convex, } g \text { affine } \Longrightarrow f \circ g \text { convex }
$$

- linear combination of convex quadratics, with nonnegative coefficients, is convex quadratic
- if $f(x, w)$ is convex quadratic in x for each w (a random variable) then

$$
g(x)=\underset{w}{\mathbf{E}} f(x, w)
$$

is convex quadratic (i.e., convex quadratics closed under expectation)

Minimizing a quadratic

- if f is not convex, then $\min _{x} f(x)=-\infty$
- otherwise, x minimizes f if and only if $\nabla f(x)=P x+q=0$
- for $q \notin \operatorname{range}(P), \min _{x} f(x)=-\infty$
- for $P>0$, unique minimizer is $x=-P^{-1} q$
- minimum value is

$$
\min _{x} f(x)=-\frac{1}{2} q^{\top} P^{-1} q+\frac{1}{2} r
$$

(a concave quadratic function of q)

- for case $P \geq 0, q \in \operatorname{range}(P)$, replace P^{-1} with P^{\dagger}

Partial minimization of a quadratic

- suppose f is a quadratic function of (x, u), convex in u
- then the partial minimization function

$$
g(x)=\min _{u} f(x, u)
$$

is a quadratic function of x; if f is convex, so is g

- the minimizer $\operatorname{argmin}_{u} f(x, u)$ is an affine function of x
- minimizing a convex quadratic function over some variables yields a convex quadratic function of the remaining ones
- i.e., convex quadratics closed under partial minimization

Partial minimization of a quadratic

- let's take

$$
f(x, u)=\frac{1}{2}\left[\begin{array}{c}
x \\
u \\
1
\end{array}\right]^{\top}\left[\begin{array}{ccc}
P_{x x} & P_{x u} & q_{x} \\
P_{u x} & P_{u u} & q_{u} \\
q_{x}^{\top} & q_{u}^{\top} & r
\end{array}\right]\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right]
$$

with $P_{u u}>0, P_{u x}=P_{x u}^{\top}$

- minimizer of f over u satisfies

$$
0=\nabla_{u} f(x, u)=P_{u u} u+P_{u x} x+q_{u}
$$

so $u=-P_{u u}^{-1}\left(P_{u x} x+q_{u}\right)$ is an affine function of x

Partial minimization of a quadratic

- substituting u into expression for f gives

$$
g(x)=\frac{1}{2}\left[\begin{array}{c}
x \\
1
\end{array}\right]^{\top}\left[\begin{array}{cc}
P_{x x}-P_{x u} P_{u u}^{-1} P_{u x} & q_{x}-P_{x u} P_{u u}^{-1} q_{u} \\
q_{x}^{\top}-q_{u}^{\top} P_{u u}^{-1} P_{u x} & r-q_{u}^{\top} P_{u u}^{-1} q_{u}
\end{array}\right]\left[\begin{array}{c}
x \\
1
\end{array}\right]
$$

- $P_{x x}-P_{x u} P_{u u}^{-1} P_{u x}$ is the Schur complement of P w.r.t. u
- $P_{x x}-P_{x u} P_{u u}^{-1} P_{u x} \geq 0$ if $P \geq 0$
- or simpler: g is composition of f with affine function $x \mapsto(x, u)$

$$
\left[\begin{array}{l}
x \\
u
\end{array}\right]=\left[\begin{array}{c}
I \\
-P_{u u}^{-1} P_{u x}
\end{array}\right] x+\left[\begin{array}{c}
0 \\
-P_{u u}^{-1} q_{u}
\end{array}\right]
$$

- we already know how to form composition quadratic (affine), and the result is convex

Summary

convex quadratics are closed under

- addition
- expectation
- pre-composition with an affine function
- partial minimization
in each case, we can explicitly compute the coefficients of the result using linear algebra

Linear quadratic Markov decision process

(Random) linear dynamical system

- dynamics $x_{t+1}=f_{t}\left(x_{t}, u_{t}, w_{t}\right)=A_{t}\left(w_{t}\right) x_{t}+B_{t}\left(w_{t}\right) u_{t}+c_{t}\left(w_{t}\right)$
- for each w_{t}, f_{t} is affine in $\left(x_{t}, u_{t}\right)$
- $x_{0}, w_{0}, w_{1}, \ldots$ are independent
- $A_{t}\left(w_{t}\right) \in \mathbb{R}^{n \times n}$ is dynamics matrix
- $B_{t}\left(w_{t}\right) \in \mathbb{R}^{n \times m}$ is input matrix
- $c_{t}\left(w_{t}\right) \in \mathbb{R}^{n}$ is offset

Linear quadratic stochastic control problem

\checkmark stage cost $g_{t}\left(x_{t}, u_{t}, w_{t}\right)$ is convex quadratic in $\left(x_{t}, u_{t}\right)$ for each w_{t}

- choose policy $u_{t}=\mu_{t}\left(x_{t}\right)$ to minimize objective

$$
J=\mathbf{E}\left(\sum_{t=0}^{T-1} g_{t}\left(x_{t}, u_{t}, w_{t}\right)+g_{T}\left(x_{T}\right)\right)
$$

Dynamic programming

$-\operatorname{set} v_{T}(x)=g_{T}(x)$

- for $t=T-1, \ldots, 0$,

$$
\begin{aligned}
& \mu_{t}(x) \in \underset{u}{\operatorname{argmin}} \mathbf{E}\left(g_{t}\left(x, u, w_{t}\right)+v_{t+1}\left(f_{t}\left(x, u, w_{t}\right)\right)\right) \\
& v_{t}(x)=\mathbf{E}\left(g_{t}\left(x, \mu_{t}(x), w_{t}\right)+v_{t+1}\left(f_{t}\left(x, \mu_{t}(x), w_{t}\right)\right)\right)
\end{aligned}
$$

- all v_{t} are convex quadratic, and all μ_{t} are affine
- this gives value functions and optimal policy, explicitly

Dynamic programming

we show v_{t} are convex quadratic by (backward) induction

- suppose v_{T}, \ldots, v_{t+1} are convex quadratic
- since f_{t} is affine in $(x, u), v_{t+1}\left(f_{t}\left(x, u, w_{t}\right)\right)$ is convex quadratic
- so $g_{t}\left(x, u, w_{t}\right)+v_{t+1}\left(f_{t}\left(x, u, w_{t}\right)\right)$ is convex quadratic
- and so is its expectation over w_{t}
- partial minimization over u leaves convex quadratic of x, which is $v_{t}(x)$
- argmin is affine function of x, so optimal policy is affine

Linear equality constraints

- can add (deterministic) linear equality constraints on x_{t}, u_{t} into g_{t}, g_{T} :

$$
g_{t}(x, u, w)=g_{t}^{\text {quad }}(x, u, w)+ \begin{cases}0 & \text { if } F_{t} x+G_{t} u=h_{t} \\ \infty & \text { otherwise }\end{cases}
$$

- everything still works:
- v_{t} is convex quadratic, possibly with equality constraints
- μ_{t} is affine
- reason: minimizing a convex quadratic over some variables, subject to equality constraints, yields a convex quadratic in remaining variables

