EE365: Linear Quadratic Trading Example

Linear quadratic trading: Dynamics

- $x_{t+1}=f_{t}\left(x_{t}, u_{t}, \rho_{t}\right)=\operatorname{diag}\left(\rho_{t}\right)\left(x_{t}+u_{t}\right)$
- $x_{t} \in \mathbb{R}^{n}$ is dollar amount of holding in n assets
- $\left(x_{t}\right)_{i}<0$ means short position in asset i in period t
- $u_{t} \in \mathbb{R}^{n}$ is dollar amount of each asset bought at beginning of period t
- $\left(u_{t}\right)_{i}<0$ means asset i is sold in period t
- $x_{t}^{+}=x_{t}+u_{t}$ is post-trade portfolio
- $\rho_{t} \in \mathbb{R}_{++}^{n}$ is (random) return of assets over period $(t, t+1]$
- returns independent, with $\mathbf{E} \rho_{t}=\bar{\rho}_{t}, \mathbf{E} \rho_{t} \rho_{t}^{\top}=\Sigma_{t}$

Linear quadratic trading: Stage cost

stage cost for $t=0, \ldots, T-1$ is (convex quadratic)

$$
g_{t}(x, u)=\mathbf{1}^{\top} u+\frac{1}{2}\left(\kappa_{t}^{\top} u^{2}+\gamma(x+u)^{\top} Q_{t}(x+u)\right)
$$

with $Q_{t}>0$

- first term is gross cash in
- second term is quadratic transaction cost (square is elementwise; $\kappa_{t}>0$)
- third term is risk (variance of post-trade portfolio for $Q_{t}=\Sigma_{t}-\bar{\rho}_{t} \bar{\rho}_{t}^{\top}$)
- $\gamma>0$ is risk aversion parameter
- minimizing total stage cost equivalent to maximizing (risk-penalized) net cash taken from portfolio

Linear quadratic trading: Terminal cost

- terminal cost: $g_{T}(x)=-\mathbf{1}^{\top} x+\frac{1}{2} \kappa_{T}^{\top} x^{2}, \kappa_{T}>0$
- this is net cash in if we close out (liquidate) final positions, with quadratic transaction cost

Linear quadratic trading: DP

- value functions quadratic (including linear and constant terms):

$$
v_{t}(x)=\frac{1}{2}\left(x^{\top} P_{t} x+2 q_{t}^{\top} x+r_{t}\right)
$$

- we'll need formula

$$
\mathbf{E}\left(\operatorname{diag}\left(\rho_{t}\right) P \operatorname{diag}\left(\rho_{t}\right)\right)=P \circ \Sigma_{t}
$$

where \circ is Hadamard (element-wise) product

- optimal expected tail cost

$$
\begin{aligned}
& \mathbf{E} v_{t+1}\left(f_{t}\left(x, u, \rho_{t}\right)\right)=\mathbf{E} v_{t+1}\left(\operatorname{diag}\left(\rho_{t}\right) x^{+}\right) \\
& \quad=\frac{1}{2}\left(\left(x^{+}\right)^{\top} P_{t+1} \circ \Sigma_{t} x^{+}+2 q_{t+1}^{\top} \operatorname{diag}\left(\bar{\rho}_{t}\right) x^{+}+r_{t+1}\right)
\end{aligned}
$$

Linear quadratic trading: DP

- $P_{T}=\operatorname{diag}\left(\kappa_{T}\right), q_{T}=-\mathbf{1}, r_{T}=0$
- recall $v_{t}(x)=\min _{u} \mathbf{E}\left(g_{t}(x, u)+v_{t+1}\left(\operatorname{diag}\left(\rho_{t}\right)(x+u)\right)\right)$
- for $t=T-1, \ldots, 0$ we minimize over u to get optimal policy:

$$
\begin{aligned}
\mu_{t}(x) & =\operatorname{argmin}_{u}\left(u^{\top}\left(S_{t+1}+\operatorname{diag}\left(\kappa_{t}\right)\right) u+2\left(S_{t+1} x+s_{t+1}+\mathbf{1}\right)^{\top} u\right) \\
& =-\left(S_{t+1}+\operatorname{diag}\left(\kappa_{t}\right)\right)^{-1}\left(S_{t+1} x+s_{t+1}+\mathbf{1}\right) \\
& =K_{t} x+l_{t}
\end{aligned}
$$

where

$$
S_{t+1}=P_{t+1} \circ \Sigma_{t}+\gamma Q_{t}, \quad s_{t+1}=\bar{\rho}_{t} \circ q_{t+1}
$$

- using $u=K_{t} x+l_{t}$ we then have

$$
v_{t}(x)=\frac{1}{2}\left[\begin{array}{c}
x \\
1
\end{array}\right]^{\top}\left[\begin{array}{cc}
S_{t+1}\left(I+K_{t}\right) & s_{t+1}+S_{t+1} l_{t} \\
s_{t+1}^{\top}+l_{t}^{\top} S_{t+1} & r_{t+1}+\left(s_{t+1}+\mathbf{1}\right)^{\top} l_{t}
\end{array}\right]\left[\begin{array}{c}
x \\
1
\end{array}\right]
$$

Linear quadratic trading: value iteration

- set $P_{T}=\operatorname{diag}\left(\kappa_{T}\right), q_{T}=-\mathbf{1}, r_{T}=0$
- for $t=T-1, \ldots, 0$

$$
\begin{aligned}
K_{t} & =-\left(S_{t+1}+\operatorname{diag}\left(\kappa_{t}\right)\right)^{-1} S_{t+1} \\
l_{t} & =-\left(S_{t+1}+\operatorname{diag}\left(\kappa_{t}\right)\right)^{-1}\left(s_{t+1}+\mathbf{1}\right) \\
P_{t} & =S_{t+1}\left(I+K_{t}\right) \\
q_{t} & =s_{t+1}+S_{t+1} l_{t} \\
r_{t} & =r_{t+1}+\left(s_{t+1}+\mathbf{1}\right)^{\top} l_{t}
\end{aligned}
$$

where

$$
S_{t+1}=P_{t+1} \circ \Sigma_{t}+\gamma Q_{t}, \quad s_{t+1}=\bar{\rho}_{t} \circ q_{t+1}
$$

- optimal policy: $\mu_{t}^{\star}(x)=K_{t} x+l_{t}$
- can write as $\mu_{t}^{\star}(x)=K_{t}\left(x-x_{t}^{\mathrm{tar}}\right), \quad x_{t}^{\mathrm{tar}}=-K_{t}^{-1} l_{t}=-S_{t+1}^{-1}\left(s_{t+1}+\mathbf{1}\right)$
- $J^{\star}=\mathbf{E} v_{0}\left(x_{0}\right)$

Linear quadratic trading: Numerical instance

- $n=30$ assets over $T=100$ time-steps
- initial portfolio $x_{0}=0$
- $\bar{\rho}_{t}=\bar{\rho}, \Sigma_{t}=\Sigma$ for $t=0, \ldots, T-1$
- $Q_{t}=\Sigma-\overline{\rho \rho}^{\top}$ for $t=0, \ldots, T-1$
- asset returns log-normal, expected returns range over $\pm 3 \%$ per period
- asset return standard deviations range from 0.4% to 9.8%
- asset correlations range from -0.3 to 0.8

Linear quadratic trading: Numerical instance

- $N=100$ Monte Carlo simulations
- $J^{\star}=v_{0}\left(x_{0}\right)=-237.5$ (Monte Carlo estimate: -238.4)
- exact (red), MC estimate (blue), and samples (gray); J^{\star} red dashed

Linear quadratic trading: Numerical instance

we define $x_{T+1}=0$, i.e., we close out the position during period T

