EE365: Markov Chains

Markov chains

Transition Matrices

Distribution Propagation

Other Models

Markov chains

Markov chains

- a model for dynamical systems with possibly uncertain transitions
- very widely used, in many application areas
- one of a handful of core effective mathematical and computational tools
- often used to model systems that are not random; e.g., language

Stochastic dynamical system representation

$$
x_{t+1}=f\left(x_{t}, w_{t}\right) \quad t=0,1, \ldots
$$

- $x_{0}, w_{0}, w_{1}, \ldots$ are independent random variables
- state transitions are nondeterministic, uncertain
- combine system $x_{t+1}=f\left(x_{t}, u_{t}, w_{t}\right)$ with policy $u_{t}=\mu_{t}\left(x_{t}\right)$

Example: Inventory model with ordering policy

$$
x_{t+1}=\left[x_{t}-d_{t}+u_{t}\right]_{[0, C]} \quad u_{t}=\mu\left(x_{t}\right)
$$

- $x_{t} \in \mathcal{X}=\{0, \ldots, C\}$ is inventory level at time t
- $C>0$ is capacity
- $d_{t} \in\{0,1, \ldots\}$ is demand that arrives just after time t
- $u_{t} \in\{0,1, \ldots\}$ is new stock added to inventory
- $\mu: \mathcal{X} \rightarrow\{0,1, \ldots, C\}$ is ordering policy
- $[z]_{[0, C]}=\min (\max (z, 0), C) \quad(z$ clipped to interval $[0, C])$
- assumption: d_{0}, d_{1}, \ldots are independent

Example: Inventory model with ordering policy

$$
x_{t+1}=\left[x_{t}-d_{t}+u_{t}\right]_{[0, C]} \quad u_{t}=\mu\left(x_{t}\right)
$$

- capacity $C=6$
- demand distribution $p_{i}=\operatorname{Prob}\left(d_{t}=i\right)$

$$
p=\left[\begin{array}{lll}
0.7 & 0.2 & 0.1
\end{array}\right]
$$

- policy: refill if $x_{t} \leq 1$

$$
\mu(x)= \begin{cases}C-x & \text { if } x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- start with full inventory $x_{0}=C$

Simulation

- given initial state x_{0}
- for $t=0, \ldots, T-1$
- simulate process noise $w_{t}:=\operatorname{sample}(p)$
- update the state $x_{t+1}=f\left(x_{t}, w_{t}\right)$

Simulation

- called a particle simulation
- gives a sample of the joint distribution of $\left(x_{0}, \ldots, x_{T}\right)$
- useful
- to approximately evaluate probabilities and expectations via Monte Carlo simulation
- to get a feel for what trajectories look like (e.g., for model validation)

Graph representation

- called the transition graph
- each vertex (or node) corresponds to a state
- edge $i \rightarrow j$ is labeled with transition probability $\operatorname{Prob}\left(x_{t+1}=j \mid x_{t}=i\right)$

The tree

- each vertex of the tree corresponds to a path
- e.g., $\operatorname{Prob}\left(x_{3}=1 \mid x_{0}=2\right)=0.5 \times 0.5 \times 0.4+0.5 \times 0.6 \times 0.4$

The birth-death chain

self-loops can be omitted, since they can be figured out from the outgoing probabilities

Example: Metastability

Transition Matrices

Transition matrix representation

we define the transition matrix $P \in \mathbb{R}^{n \times n}$

$$
P_{i j}=\operatorname{Prob}\left(x_{t+1}=j \mid x_{t}=i\right)
$$

- $P \mathbf{1}=\mathbf{1}$ and $P \geq 0$ elementwise
- a matrix with these two properties is called a stochastic matrix
- if P and Q are stochastic, then so is $P Q$

Transition matrix representation

transition matrix

$$
P=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0.1 & 0.2 & 0.7 \\
0 & 0 & 0 & 0 & 0.1 & 0.2 & 0.7 \\
0.1 & 0.2 & 0.7 & 0 & 0 & 0 & 0 \\
0 & 0.1 & 0.2 & 0.7 & 0 & 0 & 0 \\
0 & 0 & 0.1 & 0.2 & 0.7 & 0 & 0 \\
0 & 0 & 0 & 0.1 & 0.2 & 0.7 & 0 \\
0 & 0 & 0 & 0 & 0.1 & 0.2 & 0.7
\end{array}\right]
$$

Particle simulation given the transition matrix

Given

- the distribution of initial states $d \in \mathbb{R}^{1 \times n}$
- the transition matrix $P \in \mathbb{R}^{n \times n}$, with rows p_{1}, \ldots, p_{n}

Algorithm:

- choose initial state $x_{0}:=\operatorname{sample}(d)$
- for $t=0, \ldots, T-1$
- find the distribution of the next state $d_{\text {next }}:=p_{x_{t}}$
- sample the next state $x_{t+1}:=\operatorname{sample}\left(d_{\text {next }}\right)$

Definition of a Markov chain

sequence of random variables $x_{t}: \Omega \rightarrow \mathcal{X}$ is a Markov chain if, for all s_{0}, s_{1}, \ldots and all t,

$$
\operatorname{Prob}\left(x_{t+1}=s_{t+1} \mid x_{t}=s_{t}, \ldots, x_{0}=s_{0}\right)=\operatorname{Prob}\left(x_{t+1}=s_{t+1} \mid x_{t}=s_{t}\right)
$$

- called the Markov property
- means that the system is memoryless
- x_{t} is called the state at time $t ; \mathcal{X}$ is called the state space
- if you know current state, then knowing past states doesn't give additional knowledge about next state (or any future state)

The joint distribution

the joint distribution of $x_{0}, x_{1}, \ldots, x_{t}$ factorizes according to

$$
\operatorname{Prob}\left(x_{0}=a, x_{1}=b, x_{2}=c, \ldots, x_{t}=q\right)=d_{a} P_{a b} P_{b c} \cdots P_{p q}
$$

because the chain rule gives

$$
\begin{aligned}
& \quad \operatorname{Prob}\left(x_{t}=s_{t}, x_{t-1}=s_{t-1}, \ldots, x_{0}=s_{0}\right) \\
& =\operatorname{Prob}\left(x_{t}=s_{t} \mid x_{t-1}=s_{t-1}, \ldots, x_{0}=s_{0}\right) \operatorname{Prob}\left(x_{t-1}=s_{t-1}, \ldots, x_{0}=s_{0}\right)
\end{aligned}
$$

abbreviating $x_{t}=s_{t}$ to just x_{t}, we can repeatedly apply this to give

$$
\operatorname{Prob}\left(x_{t}, x_{t-1}, \ldots, x_{0}\right)
$$

$=\operatorname{Prob}\left(x_{t} \mid x_{t-1}, \ldots, x_{0}\right) \operatorname{Prob}\left(x_{t-1} \mid x_{t-2}, \ldots, x_{0}\right) \cdots \operatorname{Prob}\left(x_{1} \mid x_{0}\right) \operatorname{Prob}\left(x_{0}\right)$
$=\operatorname{Prob}\left(x_{t} \mid x_{t-1}\right) \operatorname{Prob}\left(x_{t-1} \mid x_{t-2}\right) \cdots \operatorname{Prob}\left(x_{1} \mid x_{0}\right) \operatorname{Prob}\left(x_{0}\right)$

The joint distribution

- the joint distribution completely specifies the process; for example

$$
\mathbf{E} f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\sum_{a, b, c, d \in \mathcal{X}} f(a, b, c, d) d_{a} P_{a b} P_{b c} P_{c d}
$$

- in principle we can compute the probability of any event and the expected value of any function, but this requires a sum over n^{T} terms
- we can compute some expected values far more efficiently (more later)

Distribution Propagation

Distribution propagation

$$
\pi_{t+1}=\pi_{t} P
$$

- here π_{t} denotes distribution of x_{t}, so

$$
\left(\pi_{t}\right)_{i}=\operatorname{Prob}\left(x_{t}=i\right)
$$

- can compute marginals π_{1}, \ldots, π_{T} in $T n^{2}$ operations
- a useful type of simulation...

Example: Distribution propagation

Example: Reordering

- what is the probability we reorder at time t ?
- compute π_{t} by distribution propagation, and use

Evaluating expectation of separable function

- suppose $f: \mathcal{X}^{T+1} \rightarrow \mathbb{R}$ is separable, i.e.,

$$
f\left(x_{0}, \ldots, x_{T}\right)=f_{0}\left(x_{0}\right)+\cdots+f_{T}\left(x_{T}\right)
$$

where $f_{t}: \mathcal{X} \rightarrow \mathbb{R}$

- then we have

$$
\mathbf{E} f(x)=\pi_{0} f_{0}+\cdots+\pi_{T} f_{T}
$$

- using distribution propagation, we can compute exactly with $T n^{2}$ operations

Powers of the transition matrix

as an example of the use of the joint distribution, let's show

$$
\left(P^{k}\right)_{i j}=\operatorname{Prob}\left(x_{t+k}=j \mid x_{t}=i\right)
$$

this holds because

$$
\begin{aligned}
& \operatorname{Prob}\left(x_{t+k}=s_{t+k} \mid x_{t}=s_{t}\right)=\frac{\operatorname{Prob}\left(x_{t+k}=s_{t+k} \text { and } x_{t}=s_{t}\right)}{\operatorname{Prob}\left(x_{t}=s_{t}\right)} \\
& =\frac{\sum_{s_{0}, s_{1}, \ldots, s_{t-1}, s_{t+1}, \ldots, s_{t+k-1}} d_{s_{0}} P_{s_{0} s_{1}} P_{s_{1} s_{2}} \cdots P_{s_{t+k-1} s_{t+k}}}{\operatorname{Prob}\left(x_{t}=s_{t}\right)} \\
& =\frac{\left(\sum_{s_{0}, s_{1}, \ldots, s_{t-1}} d_{s_{0}} P_{s_{0} s_{1}} \cdots P_{s_{t-1} s_{t}}\right)\left(\sum_{s_{t+1}, \ldots, s_{t+k-1}} P_{s_{t} s_{t+1}} \cdots P_{s_{t+k-1} s_{t+k}}\right)}{\operatorname{Prob}\left(x_{t}=s_{t}\right)}
\end{aligned}
$$

Example: k step transition probabilities

two ways to compute $\operatorname{Prob}\left(x_{t}=j \mid x_{0}=i\right)$

- direct method: sum products of probabilities over n^{t} state sequences
- using matrix powers: $\operatorname{Prob}\left(x_{t}=j \mid x_{0}=i\right)=\left(P^{t}\right)_{i j}$
- we can compute this in
- $O\left(n^{3} t\right)$ arithmetic operations (by multiplying matrices to get P)
- $O\left(n^{3}\right)$ arithmetic operations (by first diagonalizing P)

Other Models

Time-varying Markov chains

- we may have a time-varying Markov chain, with one transition matrix for each time

$$
\left(P_{t}\right)_{i j}=\operatorname{Prob}\left(x_{t+1}=j \mid x_{t}=i\right)
$$

- suppose $\operatorname{Prob}\left(x_{t}=a\right) \neq 0$ for all $a \in \mathcal{X}$ and t then the factorization property that there exists stochastic matrices P_{0}, P_{1}, \ldots and a distribution d such that

$$
\operatorname{Prob}\left(x_{0}=a, x_{1}=b, x_{2}=c, \ldots, x_{t}=q\right)=d_{a}\left(P_{0}\right)_{a b}\left(P_{1}\right)_{b c} \cdots\left(P_{t-1}\right)_{p q}
$$

is equivalent to the Markov property

- the theory of factorization properties of distributions is called Bayesian networks or graphical models (with Markov chains the simplest case)

Dynamical system representation revisited

$$
x_{t+1}=f\left(x_{t}, w_{t}\right)
$$

If $x_{0}, w_{0}, w_{1}, \ldots$ are independent then x_{0}, x_{1}, \ldots is Markov

Dynamical system representation

To see that x_{0}, x_{1}, \ldots is Markov, notice that

$$
\begin{aligned}
& \operatorname{Prob}\left(x_{t+1}=s_{t+1} \mid x_{0}=s_{0}, \ldots, x_{t}=s_{t}\right) \\
= & \operatorname{Prob}\left(f\left(s_{t}, w_{t}\right)=s_{t+1} \mid x_{0}=s_{0}, \ldots, x_{t}=s_{t}\right) \\
= & \operatorname{Prob}\left(f\left(s_{t}, w_{t}\right)=s_{t+1} \mid \phi_{t}\left(x_{0}, w_{0}, \ldots, w_{t-1}\right)=\left(s_{0}, \ldots, s_{t}\right)\right) \\
= & \operatorname{Prob}\left(f\left(s_{t}, w_{t}\right)=s_{t+1}\right)
\end{aligned}
$$

- $\left(x_{0}, \ldots, x_{t}\right)=\phi_{t}\left(x_{0}, w_{0}, \ldots, w_{t-1}\right)$ follows from $x_{t+1}=f\left(x_{t}, w_{t}\right)$
- last line holds since $w_{t} \Perp\left(x_{0}, w_{0}, \ldots, w_{t-1}\right)$ and $x \Perp y \Longrightarrow f(x) \Perp g(y)$
x_{0}, x_{1}, \ldots is Markov because the above approach also gives

$$
\operatorname{Prob}\left(x_{t+1}=s_{t+1} \mid x_{t}=s_{t}\right)=\operatorname{Prob}\left(f\left(s_{t}, w_{t}\right)=s_{t+1}\right)
$$

State augmentation

we often have models

$$
x_{t+1}=f\left(x_{t}, w_{t}\right)
$$

where w_{0}, w_{1}, \ldots is Markov

- w_{0}, w_{1}, \ldots satisfy $w_{t+1}=g\left(w_{t}, v_{t}\right)$ where v_{0}, v_{1}, \ldots are independent
- construct an equivalent Markov chain, with state $z_{t}=\left[\begin{array}{l}x_{t} \\ w_{t}\end{array}\right]$
- dynamics $z_{t+1}=h\left(z_{t}, v_{t}\right)$ where

$$
h(z, v)=\left[\begin{array}{l}
f\left(z_{1}, z_{2}\right) \\
g\left(z_{2}, v\right)
\end{array}\right]
$$

Markov k

$$
x_{t+1}=f\left(x_{t}, x_{t-1}, \ldots, x_{t-k+1}, w_{t}\right)
$$

- called a Markov-k model
- assume $\left(x_{0}, x_{1}, \ldots, x_{k-1}\right), w_{0}, w_{1}, w_{2}, \ldots$ are independent
- initial distribution on $\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)$
- Markov- k property: for all s_{0}, s_{1}, \ldots,

$$
\begin{aligned}
& \operatorname{Prob}\left(x_{t+1}=s_{t+1} \mid x_{t}=s_{t}, \ldots, x_{0}=s_{0}\right) \\
& \quad=\operatorname{Prob}\left(x_{t+1}=s_{t+1} \mid x_{t}=s_{t}, x_{t-1}=s_{t-1}, \ldots, x_{t-k+1}=s_{t-k+1}\right)
\end{aligned}
$$

Markov k

$$
x_{t+1}=f\left(x_{t}, x_{t-1}, \ldots, x_{t-k+1}, w_{t}\right)
$$

- equivalent Markov system, with state $z_{t} \in \mathcal{Z}=\mathcal{X}^{k}$; notice that $|\mathcal{Z}|=|\mathcal{X}|^{k}$

$$
z_{t}=\left[\begin{array}{c}
x_{t} \\
x_{t-1} \\
\vdots \\
x_{t-k+1}
\end{array}\right]
$$

- dynamics $z_{t+1}=g\left(z_{t}, w_{t}\right)$ where

$$
g(z, w)=\left[\begin{array}{c}
f\left(z_{1}, z_{2}, \ldots, z_{k}, w\right) \\
z_{1} \\
\vdots \\
z_{k-1}
\end{array}\right]
$$

Markov language models

- given text, construct a Markov k model by counting the frequency of word sequences
- applications:
- run particle simulation to generate new text
- suggest correct spellings when spell checking
- optical character recognition
- finding similar documents in information retrieval

Example: Markov language models

- example: approximately 78,000 words, 8,200 unique

He wasnt true and disappointment that wouldnt be very old school song at once it on the grayish white stone well have charlies work much to keep your wand still had a mouse into a very scratchy whiskery kiss. Then yes yes. I hope im pretty but there had never seen me what had to vacuum anymore because its all right were when flint had shot up while uncle vernon around the sun rose up to. Bill used to. Ron who to what he teaches potions one. I suppose they couldnt think about it harry hed have found out that didnt trust me all sorts of a letter which one by older that was angrier about what they would you see here albus dumbledore it was very well get a rounded bottle of everyone follows me an awful lot his face the minute. Well send you get out and see professor snape. But it must have his sleeve. I am i think. Fred and hermione and dangerous said finally. Uncle vernon opened wide open. As usual everyones celebrating all hed just have caught twice. Yehll get out. Well get the snitch yet no way up his feet.

Markov language models

- another example

Here on this paper. Seven bottles three are poison two are wine one will get us through the corridors. Even better professor flitwick could i harry said the boy miserably. Well i mean its the girls through one of them hardly daring to take rons mind off his rocker said ron loudly. Shut up said ron sounding both shocked and impressed. Id have managed it before and you should have done so because a second later hermione granger telling a downright lie to a baked potato when professor quirrell too the nervous young man made his way along the floor in front of the year the dursleys were his only chance to beat you to get past fluffy i told her you didnt say another word on the wall wiping sweat off his nerves about tomorrow. Why should he yet harry couldnt help trusting him. This is goyle said the giant turning his back legs in anger. For the food faded from the chamber theyd just chained up. Oh no it isnt the same thing. Harry who was quite clear now and gathering speed. The air became colder and colder as they jostled their way through a crowd.

