EE365: Probability and Monte Carlo

Notation

- ▶ in this course, random variables will take values in a *finite* set X
- we will use multiple styles of notation
- ▶ e.g., we switch between linear algebra notation and function notation

Abstract notation

- ▶ random variables: $x : \Omega \to \mathcal{X}$
- ▶ functions: f(x) is the value of the function $f : \mathcal{X} \to \mathbb{R}$ at the element $x \in \mathcal{X}$
- ▶ distributions: $\pi : \mathcal{X} \to \mathbb{R}$ with $\pi(x)$ the probability of outcome $x \in \mathcal{X}$
- expected values: $\mathbf{E} f(x) = \sum_{x \in \mathcal{X}} \pi(x) f(x)$

- ▶ useful in applications, where elements of X are *named variables*, possibly taking list, string, or other structured values
- ▶ fits with modern programming languages; e.g., dictionaries in Python
- implement operations on X as iterators

Concrete notation

- \blacktriangleright enumerate elements of $\mathcal X,$ so $\mathcal X=\{1,2,\ldots,n\}$
- functions: $f : \mathcal{X} \to \mathbb{R}$ is a *column vector* $f \in \mathbb{R}^n$
- distributions: $\pi : \mathcal{X} \to \mathbb{R}$ is a *row vector* $\pi \in \mathbb{R}^{1 \times n}$
- expected values: $\mathbf{E} f(x) = \pi f$
- ▶ probability of event $E \subset \mathcal{X}$: $\mathbf{Prob}(E) = \pi \mathbf{1}_E$ where $\mathbf{1}_E$ is the indicator vector

$$(1_E)_i = egin{cases} 1 & ext{if } i \in E \\ 0 & ext{otherwise} \end{cases}$$

Sampling from a distribution

▶ for distribution $\pi \in \mathbb{R}^{1 \times n}$, cumulative distribution $c \in \mathbb{R}^{1 \times n}$ is $c_i = \sum_{i=1}^{i} \pi_i$

► example: distribution $\pi = \begin{bmatrix} 0.1 & 0.3 & 0.2 & 0.4 \end{bmatrix}$ gives cumulative distribution $c = \begin{bmatrix} 0.1 & 0.4 & 0.6 & 1.0 \end{bmatrix}$

▶ to generate
$$x \sim \pi$$
, pick $u \sim \mathcal{U}[0,1]$, and let $x = \min\{i \mid u \leq c_i\}$

• we denote a sample from distribution π as sample (π)

Monte Carlo

- a method to *estimate* $e = \mathbf{E} f(x)$
- useful when
 - ▶ n is too large to explicitly form sum in πf
 - \blacktriangleright but we have efficient method to generate samples from π and evaluate f(x)
- basic Monte Carlo method:
 - \blacktriangleright generate independent samples $x^{(1)},\ldots,x^{(N)}\sim\pi$
 - estimate

$$\hat{e} = \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)})$$

- \hat{e} is unbiased estimate of $e = \mathbf{E} f(x)$
- $\mathbf{E}(\hat{e} e)^2 = \mathbf{var} f(x)/N$ (var(z) is variance of z)

Example

- $x = (b_1, \dots, b_{50}), b_i \in \{0, 1\}$ IID with $\mathbf{Prob}(b_i = 1) = 0.4$
- $|\mathcal{X}| = 2^{50}$; too big to enumerate all $\pi(x)$
- ▶ let's estimate Prob(∑²⁵_{i=1} b_i ≥ 0.6∑⁵⁰_{i=1} b_i) (60% or more of ones appear in first half)
- plot shows MC estimate versus N

