EE365: Probability and Monte Carlo

Notation

- in this course, random variables will take values in a finite set \mathcal{X}
- we will use multiple styles of notation
- e.g., we switch between linear algebra notation and function notation

Abstract notation

- random variables: $x: \Omega \rightarrow \mathcal{X}$
- functions: $f(x)$ is the value of the function $f: \mathcal{X} \rightarrow \mathbb{R}$ at the element $x \in \mathcal{X}$
- distributions: $\pi: \mathcal{X} \rightarrow \mathbb{R}$ with $\pi(x)$ the probability of outcome $x \in \mathcal{X}$
- expected values: $\mathbf{E} f(x)=\sum_{x \in \mathcal{X}} \pi(x) f(x)$
- useful in applications, where elements of \mathcal{X} are named variables, possibly taking list, string, or other structured values
- fits with modern programming languages; e.g., dictionaries in Python
- implement operations on \mathcal{X} as iterators

Concrete notation

- enumerate elements of \mathcal{X}, so $\mathcal{X}=\{1,2, \ldots, n\}$
- functions: $f: \mathcal{X} \rightarrow \mathbb{R}$ is a column vector $f \in \mathbb{R}^{n}$
- distributions: $\pi: \mathcal{X} \rightarrow \mathbb{R}$ is a row vector $\pi \in \mathbb{R}^{1 \times n}$
- expected values: $\mathbf{E} f(x)=\pi f$
- probability of event $E \subset \mathcal{X}: \operatorname{Prob}(E)=\pi 1_{E}$ where 1_{E} is the indicator vector

$$
\left(1_{E}\right)_{i}= \begin{cases}1 & \text { if } i \in E \\ 0 & \text { otherwise }\end{cases}
$$

Sampling from a distribution

- for distribution $\pi \in \mathbb{R}^{1 \times n}$, cumulative distribution $c \in \mathbb{R}^{1 \times n}$ is $c_{i}=\sum_{j=1}^{i} \pi_{j}$
- example: distribution $\pi=\left[\begin{array}{llll}0.1 & 0.3 & 0.2 & 0.4\end{array}\right]$ gives cumulative distribution $c=\left[\begin{array}{llll}0.1 & 0.4 & 0.6 & 1.0\end{array}\right]$
- to generate $x \sim \pi$, pick $u \sim \mathcal{U}[0,1]$, and let $x=\min \left\{i \mid u \leq c_{i}\right\}$
- we denote a sample from distribution π as $\operatorname{sample}(\pi)$

Monte Carlo

- a method to estimate $e=\mathbf{E} f(x)$
- useful when
- n is too large to explicitly form sum in πf
- but we have efficient method to generate samples from π and evaluate $f(x)$
- basic Monte Carlo method:
- generate independent samples $x^{(1)}, \ldots, x^{(N)} \sim \pi$
- estimate

$$
\hat{e}=\frac{1}{N} \sum_{i=1}^{N} f\left(x^{(i)}\right)
$$

- \hat{e} is unbiased estimate of $e=\mathbf{E} f(x)$
- $\mathbf{E}(\hat{e}-e)^{2}=\operatorname{var} f(x) / N \quad(\operatorname{var}(z)$ is variance of $z)$

Example

- $x=\left(b_{1}, \ldots, b_{50}\right), b_{i} \in\{0,1\}$ IID with $\operatorname{Prob}\left(b_{i}=1\right)=0.4$
- $|\mathcal{X}|=2^{50} ;$ too big to enumerate all $\pi(x)$
- let's estimate $\operatorname{Prob}\left(\sum_{i=1}^{25} b_{i} \geq 0.6 \sum_{i=1}^{50} b_{i}\right)$ (60% or more of ones appear in first half)
- plot shows MC estimate versus N

