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Markov decision processes



Markov decision processes

» add input (or action or control) to Markov chain with costs
» input selects from a set of possible transition probabilities

» input is function of state (in standard information pattern)



Definition: Dynamical system form

Tep1 = fe(xe,ue,we), t=0,1,..., T —1

» state ;. € X

» action or input u; € U

» uncertainty or disturbance w; € W

» dynamics functions f; : X XU x W — X

» Zo,Wo,-..,wr—1 are independent RVs

» variation (state dependent input space): u: € Uy (x¢) CU
(U (z¢) is set of allowed actions in state z; at time t)



Policy

» action is function of state:

utzut(xt), t:07...,T—1

» i 0 X — U is state feedback function at time ¢

» 1= (po,...,pr—1) is the policy (or control law)

» number of possible policies: |if]*!T

» very large for any case of interest

» foreacht=0,...,7 — 1, for each x € X, we can choose u:(z) € U



Closed-loop system

» with policy, (‘closed-loop’) dynamics is
Tip1 = Fo(@e, we) = fe(@e, pe (@), we),
» [} are closed-loop state transition functions

» xo,...,zr is Markov

t=0,1,...



Information patterns

» u; = pe(x,) is standard information pattern

» action is function of current state

» also called state feedback control
» some nonstandard information patterns:

» full information (or prescient): us = p¢(zo, wo, ..., wr—1)
» no information: u; = () (i.e., wo,...,ur—1 are fixed)

» initial state (also called open-loop): u; = p¢(zo)

>

state and disturbance: u: = pt (¢, we)



Cost function

» total cost is
T—1

J=E Z gt (e, ue, we) + gr (o)

t=0
» stage cost functions g; : X XU x W — R
» terminal cost function g7 : X — R

» variation: allow g to take on value 400 to encode constraints on state-action
pairs (—oo for rewards, when we maximize)

» we sometimes write J* to show dependence of cost on policy



Closed-loop stage cost functions

» closed-loop stage cost functions:

Gt(ﬂ?): Egt('rvﬂt(x)7wt)7 t:07
we

(note that z; 1L wy)

» closed-loop terminal cost function:



Cost function: Special cases

» deterministic cost: g; do not depend on wy

» time-invariant: go,...,gr are the same

» terminal cost only: go =+ =gr-1 =0

» state-control separable (deterministic case):
ge(@e, ur, wr) = qe(we) + re(ue)

» ¢: : X — R is state cost function

» 7 : U — R is action cost function
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Value iteration to compute cost

» we can use value iteration to compute J

v

(deterministic cost for simplicity)
» take Vr(z) = gr(z),

Vi(z) = ge(, pe (@) + EViga (fe(@, (), we)), t=T-1,...,0
(expectation is over w;)

| 2 J:ﬂ'()‘/()

v

computation cost is T|X||W)| operations (fewer for sparse transitions)
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Concrete form

» X ={1,...,n},U={1,...,m}
» transition probabilities (time-invariant case) given by

Pijk = PI‘Ob(ItJrl :j | Tt = i, Ut = k)

v

P;ji. is probability that next state is j, when current state is 7 and control
action k is taken

» P is 3-D array (often sparse)
» in state ¢, action chooses next state distribution from choices

Pi.w=1[Pak - Pnkl, kE=1,....m

» for time-varying case, P is 4-D array (!!)
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Concrete form

» stage costs (time-invariant case) given by

Cijk, i,j:].,...,n, ]C:l,...,m

v

Cijk is cost when state 7 transitions to state j with action k

v

C'is 3-D array (often sparse); can assume that C;;, = 0 when P, =0

» state-action separable case: Cyjr = q; + 7
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Markov decision problem
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Markov decision process

» Markov decision process (MDP) defined by

» (action dependent) state transition functions fo,..., fr—1
» distributions of xg,wo ..., wr—1
» stage cost functions go, ..., g7—1

» terminal cost function gr

» policy defined by state feedback functions o, ..., ur—1

» combining Markov decision problem with policy, we get closed-loop Markov
chain with costs

15



Markov decision problem

v

given Markov decision process, cost with policy p is J*

» Markov decision problem: find a policy p* that minimizes J*

» number of possible policies: |Z/I|‘X|T (very large for any case of interest)
» there can be multiple optimal policies

» we will see how to find an optimal policy next lecture
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Examples
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Trading

simple trading model for one asset:

hold (integer) number of shares g; € [Q™™, Q™**] in period t

v

buy u; shares at time ¢, u; € [Q™™ — q¢, Q™ — ¢], so

v

qt+1 = qt + Ut

v

price p: € {Pi1,..., Px} is Markov; p: known before u: is chosen
» revenue is —uspr — T'(ue) — S((q¢)-)

» T'(u¢) > 0 is transaction cost

» S((gt)-) > 0 is shorting cost

v

qo = 0; we require g7 =0

» maximize total expected revenue over t =0,...,T — 1
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Trading

MDP model:
» state is z¢+ = (q¢, pt)
» stage cost is negative revenue

» terminal cost is g7 (0) = 0; gr(g) = oo for g # 0

v

(trading) policy gives number of assets to buy (sell) as function of time ¢,
current holdings ¢;, and price p;

presumably, good policy buys when p; is low and sells when p; is high

v
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Variations

how do we handle (model) the following, and what assumptions would we need to
make?

» price movements that depend on u; (price impact)
» imperfect fulfillment (i.e., you might not buy or sell the full amount u;)

» price movements that depend on a ‘signal’ s; € {S1,..., S} that you know
at time ¢
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