EE365: Markov Decision Processes

Markov decision processes

Markov decision problem

Examples

Markov decision processes

Markov decision processes

- add input (or action or control) to Markov chain with costs
- input selects from a set of possible transition probabilities
- input is function of state (in standard information pattern)

Definition: Dynamical system form

$$
x_{t+1}=f_{t}\left(x_{t}, u_{t}, w_{t}\right), \quad t=0,1, \ldots, T-1
$$

- state $x_{t} \in \mathcal{X}$
- action or input $u_{t} \in \mathcal{U}$
- uncertainty or disturbance $w_{t} \in \mathcal{W}$
- dynamics functions $f_{t}: \mathcal{X} \times \mathcal{U} \times \mathcal{W} \rightarrow \mathcal{X}$
- $x_{0}, w_{0}, \ldots, w_{T-1}$ are independent RVs
- variation (state dependent input space): $u_{t} \in \mathcal{U}_{t}\left(x_{t}\right) \subseteq \mathcal{U}$ $\left(\mathcal{U}_{t}\left(x_{t}\right)\right.$ is set of allowed actions in state x_{t} at time $\left.t\right)$

Policy

- action is function of state:

$$
u_{t}=\mu_{t}\left(x_{t}\right), \quad t=0, \ldots, T-1
$$

- $\mu_{t}: \mathcal{X} \rightarrow \mathcal{U}$ is state feedback function at time t
- $\mu=\left(\mu_{0}, \ldots, \mu_{T-1}\right)$ is the policy (or control law)
- number of possible policies: $|\mathcal{U}|^{|\mathcal{X}| T}$
- very large for any case of interest
- for each $t=0, \ldots, T-1$, for each $x \in \mathcal{X}$, we can choose $\mu_{t}(x) \in \mathcal{U}$

Closed-loop system

- with policy, ('closed-loop') dynamics is

$$
x_{t+1}=F_{t}\left(x_{t}, w_{t}\right)=f_{t}\left(x_{t}, \mu_{t}\left(x_{t}\right), w_{t}\right), \quad t=0,1, \ldots, T-1
$$

- F_{t} are closed-loop state transition functions
- x_{0}, \ldots, x_{T} is Markov

Information patterns

- $u_{t}=\mu_{t}\left(x_{t}\right)$ is standard information pattern
- action is function of current state
- also called state feedback control
- some nonstandard information patterns:
- full information (or prescient): $u_{t}=\mu_{t}\left(x_{0}, w_{0}, \ldots, w_{T-1}\right)$
- no information: $u_{t}=\mu_{t}()$ (i.e., u_{0}, \ldots, u_{T-1} are fixed)
- initial state (also called open-loop): $u_{t}=\mu_{t}\left(x_{0}\right)$
- state and disturbance: $u_{t}=\mu_{t}\left(x_{t}, w_{t}\right)$

Cost function

- total cost is

$$
J=\mathbf{E}\left(\sum_{t=0}^{T-1} g_{t}\left(x_{t}, u_{t}, w_{t}\right)+g_{T}\left(x_{T}\right)\right)
$$

- stage cost functions $g_{t}: \mathcal{X} \times \mathcal{U} \times \mathcal{W} \rightarrow \mathbb{R}$
- terminal cost function $g_{T}: \mathcal{X} \rightarrow \mathbb{R}$
- variation: allow g_{t} to take on value $+\infty$ to encode constraints on state-action pairs $(-\infty$ for rewards, when we maximize)
- we sometimes write J^{μ} to show dependence of cost on policy

Closed-loop stage cost functions

- closed-loop stage cost functions:

$$
G_{t}(x)=\underset{w_{t}}{\mathbf{E}} g_{t}\left(x, \mu_{t}(x), w_{t}\right), \quad t=0, \ldots, T-1
$$

(note that $x_{t} \Perp w_{t}$)

- closed-loop terminal cost function:

$$
G_{T}(x)=g_{T}(x)
$$

Cost function: Special cases

- deterministic cost: g_{t} do not depend on w_{t}
- time-invariant: g_{0}, \ldots, g_{T} are the same
- terminal cost only: $g_{0}=\cdots=g_{T-1}=0$
- state-control separable (deterministic case):

$$
g_{t}\left(x_{t}, u_{t}, w_{t}\right)=q_{t}\left(x_{t}\right)+r_{t}\left(u_{t}\right)
$$

- $q_{t}: \mathcal{X} \rightarrow \mathbb{R}$ is state cost function
- $r_{t}: \mathcal{U} \rightarrow \mathbb{R}$ is action cost function

Value iteration to compute cost

- we can use value iteration to compute J
- (deterministic cost for simplicity)
- take $V_{T}(x)=g_{T}(x)$,

$$
V_{t}(x)=g_{t}\left(x, \mu_{t}(x)\right)+\mathbf{E} V_{t+1}\left(f_{t}\left(x, \mu_{t}(x), w_{t}\right)\right), \quad t=T-1, \ldots, 0
$$

(expectation is over w_{t})

- $J=\pi_{0} V_{0}$
- computation cost is $T|\mathcal{X}||\mathcal{W}|$ operations (fewer for sparse transitions)

Concrete form

- $\mathcal{X}=\{1, \ldots, n\}, \mathcal{U}=\{1, \ldots, m\}$
- transition probabilities (time-invariant case) given by

$$
P_{i j k}=\operatorname{Prob}\left(x_{t+1}=j \mid x_{t}=i, u_{t}=k\right)
$$

- $P_{i j k}$ is probability that next state is j, when current state is i and control action k is taken
- P is $3-\mathrm{D}$ array (often sparse)
- in state i, action chooses next state distribution from choices

$$
P_{i,:, k}=\left[P_{i 1 k} \cdots P_{\text {ink }}\right], \quad k=1, \ldots, m
$$

- for time-varying case, P is 4-D array (!!)

Concrete form

- stage costs (time-invariant case) given by

$$
C_{i j k}, \quad i, j=1, \ldots, n, \quad k=1, \ldots, m
$$

- $C_{i j k}$ is cost when state i transitions to state j with action k
- C is 3-D array (often sparse); can assume that $C_{i j k}=0$ when $P_{i j k}=0$
- state-action separable case: $C_{i j k}=q_{i}+r_{k}$

Markov decision problem

Markov decision process

- Markov decision process (MDP) defined by
- (action dependent) state transition functions f_{0}, \ldots, f_{T-1}
- distributions of $x_{0}, w_{0} \ldots, w_{T-1}$
- stage cost functions g_{0}, \ldots, g_{T-1}
- terminal cost function g_{T}
- policy defined by state feedback functions $\mu_{0}, \ldots, \mu_{T-1}$
- combining Markov decision problem with policy, we get closed-loop Markov chain with costs

Markov decision problem

- given Markov decision process, cost with policy μ is J^{μ}
- Markov decision problem: find a policy μ^{\star} that minimizes J^{μ}
- number of possible policies: $|\mathcal{U}|^{|\mathcal{X}| T}$ (very large for any case of interest)
- there can be multiple optimal policies
- we will see how to find an optimal policy next lecture

Examples

Trading

simple trading model for one asset:

- hold (integer) number of shares $q_{t} \in\left[Q^{\min }, Q^{\max }\right]$ in period t
- buy u_{t} shares at time $t, u_{t} \in\left[Q^{\min }-q_{t}, Q^{\max }-q_{t}\right]$, so

$$
q_{t+1}=q_{t}+u_{t}
$$

- price $p_{t} \in\left\{P_{1}, \ldots, P_{k}\right\}$ is Markov; p_{t} known before u_{t} is chosen
- revenue is $-u_{t} p_{t}-T\left(u_{t}\right)-S\left(\left(q_{t}\right)_{-}\right)$
- $T\left(u_{t}\right) \geq 0$ is transaction cost
- $S\left(\left(q_{t}\right)_{-}\right) \geq 0$ is shorting cost
- $q_{0}=0 ;$ we require $q_{T}=0$
- maximize total expected revenue over $t=0, \ldots, T-1$

Trading

MDP model:

- state is $x_{t}=\left(q_{t}, p_{t}\right)$
- stage cost is negative revenue
- terminal cost is $g_{T}(0)=0 ; g_{T}(q)=\infty$ for $q \neq 0$
- (trading) policy gives number of assets to buy (sell) as function of time t, current holdings q_{t}, and price p_{t}
- presumably, good policy buys when p_{t} is low and sells when p_{t} is high

Variations

how do we handle (model) the following, and what assumptions would we need to make?

- price movements that depend on u_{t} (price impact)
- imperfect fulfillment (i.e., you might not buy or sell the full amount u_{t})
- price movements that depend on a 'signal' $s_{t} \in\left\{S_{1}, \ldots, S_{r}\right\}$ that you know at time t

