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Markov decision processes

I add input (or action or control) to Markov chain with costs

I input selects from a set of possible transition probabilities

I input is function of state (in standard information pattern)
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Definition: Dynamical system form

xt+1 = ft(xt, ut, wt), t = 0, 1, . . . , T − 1

I state xt ∈ X

I action or input ut ∈ U

I uncertainty or disturbance wt ∈ W

I dynamics functions ft : X × U ×W → X

I x0, w0, . . . , wT−1 are independent RVs

I variation (state dependent input space): ut ∈ Ut(xt) ⊆ U
(Ut(xt) is set of allowed actions in state xt at time t)
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Policy

I action is function of state:

ut = µt(xt), t = 0, . . . , T − 1

I µt : X → U is state feedback function at time t

I µ = (µ0, . . . , µT−1) is the policy (or control law)

I number of possible policies: |U||X|T

I very large for any case of interest

I for each t = 0, . . . , T − 1, for each x ∈ X , we can choose µt(x) ∈ U
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Closed-loop system

I with policy, (‘closed-loop’) dynamics is

xt+1 = Ft(xt, wt) = ft(xt, µt(xt), wt), t = 0, 1, . . . , T − 1

I Ft are closed-loop state transition functions

I x0, . . . , xT is Markov
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Information patterns

I ut = µt(xt) is standard information pattern

I action is function of current state

I also called state feedback control

I some nonstandard information patterns:

I full information (or prescient): ut = µt(x0, w0, . . . , wT−1)

I no information: ut = µt() (i.e., u0, . . . , uT−1 are fixed)

I initial state (also called open-loop): ut = µt(x0)

I state and disturbance: ut = µt(xt, wt)
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Cost function

I total cost is

J = E

(
T−1∑
t=0

gt(xt, ut, wt) + gT (xT )

)

I stage cost functions gt : X × U ×W → R

I terminal cost function gT : X → R

I variation: allow gt to take on value +∞ to encode constraints on state-action
pairs (−∞ for rewards, when we maximize)

I we sometimes write Jµ to show dependence of cost on policy
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Closed-loop stage cost functions

I closed-loop stage cost functions:

Gt(x) = E
wt

gt(x, µt(x), wt), t = 0, . . . , T − 1

(note that xt ⊥⊥ wt)

I closed-loop terminal cost function:

GT (x) = gT (x)
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Cost function: Special cases

I deterministic cost: gt do not depend on wt

I time-invariant: g0, . . . , gT are the same

I terminal cost only: g0 = · · · = gT−1 = 0

I state-control separable (deterministic case):

gt(xt, ut, wt) = qt(xt) + rt(ut)

I qt : X → R is state cost function

I rt : U → R is action cost function
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Value iteration to compute cost

I we can use value iteration to compute J

I (deterministic cost for simplicity)

I take VT (x) = gT (x),

Vt(x) = gt(x, µt(x)) +EVt+1(ft(x, µt(x), wt)), t = T − 1, . . . , 0

(expectation is over wt)

I J = π0V0

I computation cost is T |X ||W| operations (fewer for sparse transitions)
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Concrete form

I X = {1, . . . , n}, U = {1, . . . ,m}

I transition probabilities (time-invariant case) given by

Pijk = Prob(xt+1 = j | xt = i, ut = k)

I Pijk is probability that next state is j, when current state is i and control
action k is taken

I P is 3-D array (often sparse)

I in state i, action chooses next state distribution from choices

Pi,:,k = [Pi1k · · ·Pink], k = 1, . . . ,m

I for time-varying case, P is 4-D array (!!)
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Concrete form

I stage costs (time-invariant case) given by

Cijk, i, j = 1, . . . , n, k = 1, . . . ,m

I Cijk is cost when state i transitions to state j with action k

I C is 3-D array (often sparse); can assume that Cijk = 0 when Pijk = 0

I state-action separable case: Cijk = qi + rk
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Markov decision problem
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Markov decision process

I Markov decision process (MDP) defined by

I (action dependent) state transition functions f0, . . . , fT−1

I distributions of x0, w0 . . . , wT−1

I stage cost functions g0, . . . , gT−1

I terminal cost function gT

I policy defined by state feedback functions µ0, . . . , µT−1

I combining Markov decision problem with policy, we get closed-loop Markov
chain with costs
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Markov decision problem

I given Markov decision process, cost with policy µ is Jµ

I Markov decision problem: find a policy µ? that minimizes Jµ

I number of possible policies: |U||X|T (very large for any case of interest)

I there can be multiple optimal policies

I we will see how to find an optimal policy next lecture
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Examples
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Trading

simple trading model for one asset:

I hold (integer) number of shares qt ∈ [Qmin, Qmax] in period t

I buy ut shares at time t, ut ∈ [Qmin − qt, Qmax − qt], so

qt+1 = qt + ut

I price pt ∈ {P1, . . . , Pk} is Markov; pt known before ut is chosen

I revenue is −utpt − T (ut)− S((qt)−)

I T (ut) ≥ 0 is transaction cost

I S((qt)−) ≥ 0 is shorting cost

I q0 = 0; we require qT = 0

I maximize total expected revenue over t = 0, . . . , T − 1
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Trading

MDP model:

I state is xt = (qt, pt)

I stage cost is negative revenue

I terminal cost is gT (0) = 0; gT (q) =∞ for q 6= 0

I (trading) policy gives number of assets to buy (sell) as function of time t,
current holdings qt, and price pt

I presumably, good policy buys when pt is low and sells when pt is high
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Variations

how do we handle (model) the following, and what assumptions would we need to
make?

I price movements that depend on ut (price impact)

I imperfect fulfillment (i.e., you might not buy or sell the full amount ut)

I price movements that depend on a ‘signal’ st ∈ {S1, . . . , Sr} that you know
at time t
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