EE365: Model Predictive Control

Certainty-equivalent control

Constrained linear-quadratic regulator

Infinite horizon model predictive control

MPC with disturbance prediction

Certainty-equivalent control

Stochastic control

- dynamics $x_{t+1} = f_t(x_t, u_t, w_t)$, t = 0, ..., T 1
- $\blacktriangleright \ x_t \in \mathcal{X}, \ u_t \in \mathcal{U}, \ w_t \in \mathcal{W}$
- $\blacktriangleright x_0, w_0, \ldots, w_{T-1}$ independent
- ▶ stage cost $g_t(x_t, u_t)$; terminal cost $g_T(x_T)$
- ▶ state feedback policy $u_t = \mu_t(x_t)$, $t = 0, \dots, T-1$
- stochastic control problem: choose policy to minimize

$$J = \mathbf{E}\left(\sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T)\right)$$

Stochastic control

can solve stochastic control problem in some cases

- \blacktriangleright X, U, W finite (and as a practical matter, not too big)
- ▶ \mathcal{X} , \mathcal{U} , \mathcal{W} finite dimensional vector spaces, f_t affine, g_t convex quadratic
- and a few other special cases
- in other situations, must resort to heuristics, suboptimal policies

Certainty-equivalent control

- a simple (usually) suboptimal policy
- ▶ replace each w_t with some predicted, likely, or typical value \hat{w}_t
- stochastic control problem reduces to deterministic control problem, called certainty-equivalent problem
- **certainty-equivalent policy** is optimal policy for certainty-equivalent problem
- useful when we can't solve stochastic problem, but we can solve deterministic problem
- sounds unsophisticated, but can work very well in some cases
- ► also called **model predictive control** (MPC) (for reasons we'll see later)

Where \hat{w}_t comes from

- ▶ most likely value: choose \hat{w}_t as value of w_t with maximum probability
- a random sample of w_t (yes, really)
- a nominal value
- a prediction of w_t (more on this later)
- when w_t is a number or vector: $\hat{w}_t = \mathbf{E} w_t$, rounded to be in \mathcal{W}_t

Optimal versus CE policy via dynamic programming

► optimal policy:
$$v_T^{\star}(x) = g_T(x)$$
; for $t = T - 1, \dots, 0$,
 $v_t^{\star}(x) = \min_u \left(g_t(x, u) + \mathbf{E} v_{t+1}^{\star}(f_t(x, u, w_t))\right)$
 $\mu_t^{\star}(x) \in \operatorname*{argmin}_u \left(g_t(x, u) + \mathbf{E} v_{t+1}^{\star}(f_t(x, u, w_t))\right)$

► CE policy:
$$v_T^{ce}(x) = g_T(x)$$
; for $t = T - 1, ..., 0$,
 $v_t^{ce}(x) = \min_u (g_t(x, u) + v_{t+1}^{ce}(f_t(x, u, \hat{w}_t)))$
 $\mu_t^{ce}(x) \in \operatorname*{argmin}_u (g_t(x, u) + v_{t+1}^{ce}(f_t(x, u, \hat{w}_t)))$

Computing CE policy via optimization

- CE policy µ^{ce} is typically not computed via DP (if you could do this, why not use DP to compute optimal policy?)
- ▶ instead we *evaluate* $\mu_t^{ce}(x)$ by solving a deterministic control (optimization) problem

minimize
$$\sum_{\tau=t}^{T-1} g_{\tau}(x_{\tau}, u_{\tau}) + g_{T}(x_{T})$$

subject to $x_{\tau+1} = f_{\tau}(x_{\tau}, u_{\tau}, \hat{w}_{\tau}), \quad \tau = t, \dots, T-1$
 $x_{t} = x$

with variables $x_t, \ldots, x_T, u_t, \ldots, u_{T-1}$

- find a solution $\bar{x}_t, \ldots, \bar{x}_T, \bar{u}_t, \ldots, \bar{u}_{T-1}$
- ▶ then $\mu_t^{ce}(x) = \bar{u}_t$ (and optimal value of problem above is $v_t^{ce}(x)$)
- ▶ we don't have a formula for μ_t^{ce} (or v_t^{ce}) but we can compute $\mu_t^{ce}(x)$ ($v_t^{ce}(x)$) for any given x by solving an optimization problem

Certainty-equivalent control

- need to solve a (deterministic) optimal control problem in each step, with a given initial state
- \blacktriangleright these problems become shorter (smaller) as t increases toward T
- \blacktriangleright call solution of optimization problem at time t

 $\bar{x}_{t|t},\ldots,\bar{x}_{T|t},\quad \bar{u}_{t|t},\ldots,\bar{u}_{T|t}$

- ▶ interpret as plan of future action at time t (based on assumption that disturbances take values ŵ_t,..., ŵ_{T-1})
- solving problem above is planning
- CE control executes first step in plan of action
- once new state is determined, update plan

- N queues with capacity C: state is $q_t \in \{0, \dots, C\}^N$
- \blacktriangleright observe random arrivals w_t from some known distribution
- \blacktriangleright can serve up to S queues in each time period:

$$u_t \in \{0,1\}^N, \quad u_t \le q_t, \quad \mathbf{1}^T u_t \le S$$

• dynamics
$$q_{t+1} = (q_t - u_t + w_t)_{[0,C]}$$

stage cost

$$g_t(q_t, u_t, w_t) = \underbrace{\alpha^T q_t + \beta^T q_t^2}_{\text{queue cost}} + \underbrace{\gamma^T (q_t - u_t + w_t - C)_+}_{\text{rejection cost}}$$

• terminal cost
$$g^T(q_T) = \lambda^T q_T$$

consider example with

▶ N = 5 queues, C = 3 capacity, S = 2 servers, horizon T = 10

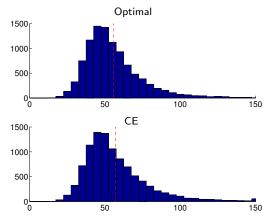
▶
$$|\mathcal{X}| = 1024$$
, $|\mathcal{U}| = 16$, $|\mathcal{W}| = 32$

- $\blacktriangleright w_t^{(i)} \sim \text{Bernoulli}(p_i)$
- ▶ (randomly chosen) parameters:

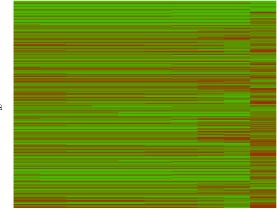
p =	(0.47,	0.17,	0.25,	0.21,	0.60)
$\alpha =$	(1.32,	0.11,	0.63,	1.41,	1.83)
$\beta =$	(0.98,	2.95,	0.16,	2.12,	2.59)
$\gamma =$	(0.95,	4.23,	7.12,	9.27,	0.82)
$\lambda =$	(0.57,	1.03,	0.24,	0.74,	2.11)

- use deterministic values $\hat{w}_t = (1, 0, 0, 0, 1), t = 0, \dots, T-1$
- other choices lead to similar results (more later)
- problem is small enough that we can solve it exactly (for comparison)

- ▶ 10000 Monte Carlo simulations with optimal and CE policies
- ▶ $J^{\star} = 55.55$, $J^{ce} = 57.04$ (very nearly optimal!)



▶ red indicates $\mu^{ce}(x) \neq \mu^{\star}(x)$; policies differ in 37.91% of entries



- ▶ with (reasonable) different assumed values, such as $\hat{w}_t = (0, 0, 0, 0, 1)$, get different policies, also nearly optimal
- interpretation: CE policies work well because
 - ▶ there are many good (nearly optimal) policies
 - ▶ the CE policy takes into account the dynamics, stage costs
- there is no need to use CE policy when (as in this example) we can just as well compute the optimal policy

Constrained linear-quadratic regulator

Linear-quadratic regulator (LQR)

$$\triangleright \mathcal{X} = \mathbb{R}^n, \mathcal{U} = \mathbb{R}^m$$

$$\blacktriangleright x_{t+1} = Ax_t + Bu_t + w_t$$

• x_0, w_0, w_1, \ldots independent zero mean, $\mathbf{E} x_0 x_0^T = X_0$, $\mathbf{E} w_t w_t^T = W_t$

• cost (with
$$Q_t \ge 0$$
, $R_t > 0$)

$$J = (1/2) \sum_{t=0}^{T-1} \left(x_t^T Q_t x_t + u_t^T R_t u_t \right) + (1/2) x_T^T Q_T x_T$$

- ▶ can solve exactly, since v_t^{\star} is quadratic, μ_t^{\star} is linear
- ▶ can compute J^* exactly

CE for LQR

- use $\hat{w}_t = \mathbf{E} w_t = 0$ (*i.e.*, neglect disturbance)
- for LQR, CE policy is actually optimal
 - \blacktriangleright in LQR lecture we saw that optimal policy doesn't depend on W
 - choice W = 0 corresponds to deterministic problems in CE
- another hint that CE isn't as dumb as it might first appear
- when $\mathbf{E} w_t \neq 0$, CE policy is not optimal

Constrained LQR

- ▶ same as LQR, but replace $U = \mathbb{R}^m$ with $U = [-1, 1]^m$
- ▶ *i.e.*, constrain control inputs to [-1, 1] ('actuator limits')
- ▶ cannot practically compute (or even represent) v_t^{\star} , μ_t^{\star}
- ▶ we don't know optimal value J^*

CE for constrained linear-quadratic regulator

- CE policy usually called MPC for constrained LQR
- use $\hat{w}_t = \mathbf{E} \, w_t = 0$
- evaluate $\mu_t^{ce}(x)$ by solving (convex) quadratic program (QP)

minimize
$$\begin{array}{ll} (1/2)\sum_{\tau=t}^{T-1} \left(x_{\tau}^{T}Q_{\tau}x_{\tau} + u_{\tau}^{T}R_{\tau}u_{\tau}\right) + (1/2)x_{T}^{T}Q_{T}x_{T}\\ \text{subject to} & x_{\tau+1} = Ax_{\tau} + Bu_{\tau}, \quad \tau = t, \ldots, T-1\\ & x_{\tau} \in \mathbb{R}^{n}, \quad u_{\tau} \in [-1,1]^{m} \quad \tau = t, \ldots, T-1\\ & x_{t} = x \end{array}$$

with variables $x_t, \ldots, x_T, u_t, \ldots, u_{T-1}$

- find solution $\bar{x}_t, \ldots, \bar{x}_T, \bar{u}_t, \ldots, \bar{u}_{T-1}$
- execute first step in plan: $\mu_t^{\text{mpc}}(x) = \bar{u}_t$

these QPs can be solved super fast (e.g., in microseconds)

consider example with

- ▶ n = 8 states, m = 2 inputs, horizon T = 50
- A, B chosen randomly, A scaled so $\max_i |\lambda_i(A)| = 1$

▶
$$X = 3I$$
, $W = 1.5I$

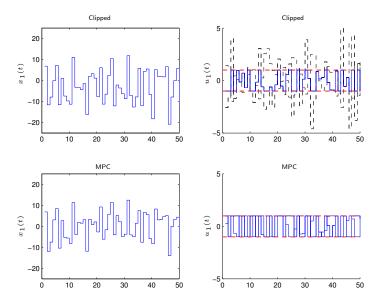
$$\blacktriangleright Q_t = I, R_t = I$$

associated (unconstrained) LQR problem has

▶
$$||u||_{\infty} > 1$$
 often
▶ $J^{1qr} = 85$ (a lower bound on J^{1qr} for constrained LQR problem)

- $\blacktriangleright \ \mu_t^{\rm clip}(x) = (K_t^{\rm lqr} x)_{[-1,1]}$ ('saturated LQR control')
 - ▶ yields performance $J^{clip} = 1641.8$
- ▶ MPC policy $\mu_t^{\text{mpc}}(x)$
 - yields performance $J^{\text{mpc}} = 1135.3$
- we don't know J^{\star} (other than $J^{\star} > J^{lqr} = 85$)
- \blacktriangleright sophisticated lower bounding techniques can show J^{mpc} very near J^{\star}

Sample traces



Infinite horizon model predictive control

Infinite horizon MPC

- want approximate policy for infinite horizon average (or total) cost stochastic control problem
- ▶ replace w_t with some typical value \hat{w} (usually constant)
- in most cases, cannot solve resulting infinite horizon deterministic control problem
- ▶ instead, solve the deterministic problem over a rolling horizon (or planning horizon) from current time t to t + T

Infinite horizon MPC

▶ to evaluate $\mu^{mpc}(x)$, solve optimization problem

minimize
$$\sum_{\tau=t}^{t+T-1} g(x_{\tau}, u_{\tau}) + g^{\text{eoh}}(x_{t+T})$$

subject to $x_{\tau+1} = f(x_{\tau}, u_{\tau}, \hat{w}), \quad \tau = t, \dots, t+T-1$
 $x_t = x$

with variables $x_t, \ldots, x_{t+T}, u_t, \ldots, u_{t+T-1}$

- find a solution $\bar{x}_t, \ldots, \bar{x}_{t+T}, \bar{u}_t, \ldots, \bar{u}_{t+T-1}$
- ▶ then $u_t^{\text{mpc}}(x_t) = \bar{u}_t$
- g^{eoh} is an end-of-horizon cost

▶ these optimization problems have the same size (cf. finite horizon MPC)

Infinite horizon MPC

- design parameters in MPC policy:
 - disturbance predictions \hat{w}_t (typically constant)
 - \blacktriangleright horizon length T
 - ▶ end-of-horizon cost g^{eoh}
- ▶ some common choices: $g^{\text{eoh}}(x) = 0$, $g^{\text{eoh}}(x) = \min_u g(x, u)$
- ▶ performance of MPC policy evaluated by Monte Carlo simulation
- \blacktriangleright for T large enough, particular value of T and choice of $g^{\rm eoh}$ shouldn't affect performance very much

Example: Supply chain management

- n nodes (warehouses/buffers)
- $x_t \in \mathbb{R}^n$ is amount of commodity at nodes at time t
- \blacktriangleright *m* unidirectional links between nodes, external world
- ▶ $u_t \in \mathbb{R}^m$ is amount of commodity transported along links at time t
- incoming and outgoing node incidence matrix:

$$A_{ij}^{\mathrm{in(out)}} = \begin{cases} 1 & \mathrm{link} \; j \; \mathrm{enters} \; (\mathrm{exits}) \; \mathrm{node} \; i \\ 0 & \mathrm{otherwise} \end{cases}$$

(include wholesale supply links and retail delivery links)

• dynamics:
$$x_{t+1} = x_t + A^{\text{in}}u_t - A^{\text{out}}u_t$$

Example: Supply chain management

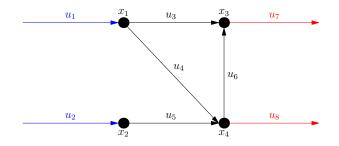
- ▶ buffer limits: $0 \le x_t \le x_{\max}$
- warehousing/storage cost: $W(x_t) = \alpha^T x_t + \beta^T x_t^2$, $\alpha, \beta \ge 0$
- ▶ link capacities: $0 \le u_t \le u_{\max}$
- $A^{\text{out}}u_t \leq x_t$ (can't ship out what's not on hand)

Example: Supply chain management

- ▶ shipping/transportation cost: $S(u_t) = S_1((u_t)_1) + \cdots + S_n((u_t)_m)$
- ▶ for internode link, $S_i((u_t)_i) = \gamma(u_t)_i$ is transportation cost
- ▶ for wholesale supply link, $S_i((u_t)_i) = (p_t^{\text{wh}})_i(u_t)_i$ is purchase cost
- ▶ for retail delivery link, $S_i((u_t)_i) = -p^{\text{ret}} \min\{(d_t)_i, (u_t)_i\}$ is the negative retail revenue, where p^{ret} is retail price and $(d_t)_i$ is the demand
- we assume wholesale prices $(p_t^{\text{wh}})_i$ are IID, demands $(d_t)_i$ are IID
- ▶ link flows u_t chosen as function of x_t , p_t^{wh} , d_t
- objective: minimize average stage cost

$$J = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} \left(S(u_t) + W(x_t) \right)$$

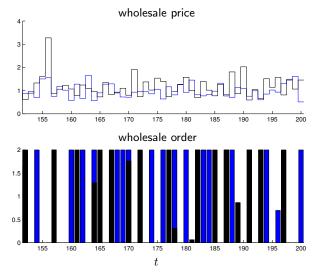
- ▶ n = 4 nodes, m = 8 links
- ▶ links 1,2 are wholesale supply; links 7,8 are retail delivery



- buffer capacities $x_{\max} = 3$
- ▶ link flow capacities $u_{\text{max}} = 2$
- storage cost parameters $\alpha = \beta = 0.01$; $\gamma = 0.05$
- ▶ wholesale prices are log-normal with means 1, 1.2; variances 0.1, 0.2
- ▶ demands are log-normal with means 1, 0.8; variances , 0.4, 0.2
- ▶ retail price is $p^{\text{ret}} = 2$

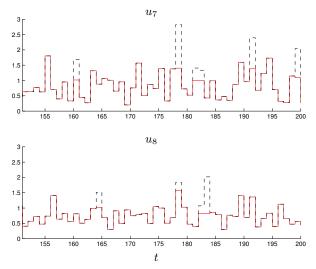
- MPC parameters:
 - future wholesale prices and retail demands assumed equal to their means (current wholesale prices and demands are known)
 - ▶ horizon T = 30
 - end-of-horizon cost $g^{\text{eoh}} = 0$
- MPC problem is QP (and readily solved)
- ▶ results: average cost J = -1.69
 - ▶ wholesale purchase cost 1.20
 - \blacktriangleright retail delivery income -3.16
- lower bounding techniques for similar problems suggests MPC is very nearly optimal

MPC sample trajectory: supply



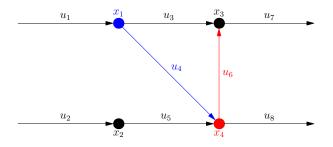
line: $(p_t^{\mathrm{wh}})_1$, $(p_t^{\mathrm{wh}})_2$; bar: u_1 , u_2

MPC sample trajectory: delivery

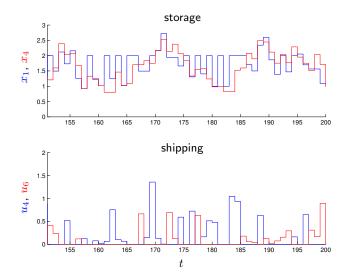


solid: delivery; dashed: demand

MPC sample trajectory



MPC sample trajectory



MPC with disturbance prediction

Rolling disturbance estimates

- ▶ in MPC, we interpret \hat{w}_t as predictions of disturbance values
- ▶ no need to assume they are independent, or even random variables
- when w_t are not independent (or interpreted as random variables), additional information can improve predictions \hat{w}_t
- \blacktriangleright we let $\hat{w}_{t|s}$ denote the **updated estimate** of w_t made at time s using all information available at time s
- these are called **rolling estimates** of w_t
- $\hat{w}_{t|s}$ can come from a statistical model, experts' predictions, . . .
- MPC with rolling disturbance prediction works very well in practice, is used in many applications (supply chain, finance)

MPC architecture

- MPC (rolling horizon, with updated predictions) splits into two components
 - \blacktriangleright the **predictor** uses all information available to make predictions of current and future values of w_t
 - the planner optimizes actions over a planning horizon that extends into the future, assuming the predictions are correct
- ▶ the MPC action is simply the current action in the current plan
- MPC is not optimal except in a few special cases
- but it often performs extremely well