
EE365: Model Predictive Control

Certainty-equivalent control

Constrained linear-quadratic regulator

Infinite horizon model predictive control

MPC with disturbance prediction
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Certainty-equivalent control
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Stochastic control

I dynamics xt+1 = ft(xt, ut, wt), t = 0, . . . , T − 1

I xt ∈ X , ut ∈ U , wt ∈ W

I x0, w0, . . . , wT−1 independent

I stage cost gt(xt, ut); terminal cost gT (xT )

I state feedback policy ut = µt(xt), t = 0, . . . , T − 1

I stochastic control problem: choose policy to minimize

J = E

(
T−1∑
t=0

gt(xt, ut) + gT (xT )

)
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Stochastic control

I can solve stochastic control problem in some cases

I X , U , W finite (and as a practical matter, not too big)

I X , U ,W finite dimensional vector spaces, ft affine, gt convex quadratic

I and a few other special cases

I in other situations, must resort to heuristics, suboptimal policies
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Certainty-equivalent control

I a simple (usually) suboptimal policy

I replace each wt with some predicted, likely, or typical value ŵt

I stochastic control problem reduces to deterministic control problem, called
certainty-equivalent problem

I certainty-equivalent policy is optimal policy for certainty-equivalent problem

I useful when we can’t solve stochastic problem, but we can solve deterministic
problem

I sounds unsophisticated, but can work very well in some cases

I also called model predictive control (MPC) (for reasons we’ll see later)
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Where ŵt comes from

I most likely value: choose ŵt as value of wt with maximum probability

I a random sample of wt (yes, really)

I a nominal value

I a prediction of wt (more on this later)

I when wt is a number or vector: ŵt = Ewt, rounded to be in Wt

6



Optimal versus CE policy via dynamic programming

I optimal policy: v?T (x) = gT (x); for t = T − 1, . . . , 0,

v?t (x) = min
u

(gt(x, u) + E v?t+1(ft(x, u, wt)))

µ?t (x) ∈ argmin
u

(gt(x, u) + E v?t+1(ft(x, u, wt)))

I CE policy: vceT (x) = gT (x); for t = T − 1, . . . , 0,

vcet (x) = min
u

(gt(x, u) + vcet+1(ft(x, u, ŵt)))

µce
t (x) ∈ argmin

u
(gt(x, u) + vcet+1(ft(x, u, ŵt)))
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Computing CE policy via optimization

I CE policy µce is typically not computed via DP
(if you could do this, why not use DP to compute optimal policy?)

I instead we evaluate µce
t (x) by solving a deterministic control (optimization)

problem

minimize
∑T−1
τ=t gτ (xτ , uτ ) + gT (xT )

subject to xτ+1 = fτ (xτ , uτ , ŵτ ), τ = t, . . . , T − 1
xt = x

with variables xt, . . . , xT , ut, . . . , uT−1

I find a solution x̄t, . . . , x̄T , ūt, . . . , ūT−1

I then µce
t (x) = ūt (and optimal value of problem above is vcet (x))

I we don’t have a formula for µce
t (or vcet ) but we can compute µce

t (x) (vcet (x))
for any given x by solving an optimization problem
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Certainty-equivalent control

I need to solve a (deterministic) optimal control problem in each step, with a
given initial state

I these problems become shorter (smaller) as t increases toward T

I call solution of optimization problem at time t

x̄t|t, . . . , x̄T |t, ūt|t, . . . , ūT |t

I interpret as plan of future action at time t
(based on assumption that disturbances take values ŵt, . . . , ŵT−1)

I solving problem above is planning

I CE control executes first step in plan of action

I once new state is determined, update plan
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Example: Multi-queue serving

I N queues with capacity C: state is qt ∈ {0, . . . , C}N

I observe random arrivals wt from some known distribution

I can serve up to S queues in each time period:

ut ∈ {0, 1}N , ut ≤ qt, 1Tut ≤ S

I dynamics qt+1 = (qt − ut + wt)[0,C]

I stage cost

gt(qt, ut, wt) = αT qt + βT q2t︸ ︷︷ ︸
queue cost

+ γT (qt − ut + wt − C)+︸ ︷︷ ︸
rejection cost

I terminal cost gT (qT ) = λT qT
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Example: Multi-queue serving

consider example with

I N = 5 queues, C = 3 capacity, S = 2 servers, horizon T = 10

I |X | = 1024, |U| = 16, |W| = 32

I w
(i)
t ∼ Bernoulli(pi)

I (randomly chosen) parameters:

p =
(

0.47, 0.17, 0.25, 0.21, 0.60
)

α =
(

1.32, 0.11, 0.63, 1.41, 1.83
)

β =
(

0.98, 2.95, 0.16, 2.12, 2.59
)

γ =
(

0.95, 4.23, 7.12, 9.27, 0.82
)

λ =
(

0.57, 1.03, 0.24, 0.74, 2.11
)
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Example: Multi-queue serving

I use deterministic values ŵt = (1, 0, 0, 0, 1), t = 0, . . . , T − 1

I other choices lead to similar results (more later)

I problem is small enough that we can solve it exactly (for comparison)
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Example: Multi-queue serving

I 10000 Monte Carlo simulations with optimal and CE policies

I J? = 55.55, Jce = 57.04 (very nearly optimal!)

0 50 100 150
0

500

1000

1500

0 50 100 150
0

500

1000

1500

Optimal

CE

13



Example: Multi-queue serving

I red indicates µce(x) 6= µ?(x); policies differ in 37.91% of entries

x

t
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Example: Multi-queue serving

I with (reasonable) different assumed values, such as ŵt = (0, 0, 0, 0, 1), get
different policies, also nearly optimal

I interpretation: CE policies work well because

I there are many good (nearly optimal) policies

I the CE policy takes into account the dynamics, stage costs

I there is no need to use CE policy when (as in this example) we can just as
well compute the optimal policy
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Constrained linear-quadratic regulator
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Linear-quadratic regulator (LQR)

I X = Rn, U = Rm

I xt+1 = Axt +But + wt

I x0, w0, w1, . . . independent zero mean, Ex0x
T
0 = X0, Ewtw

T
t = Wt

I cost (with Qt ≥ 0, Rt > 0)

J = (1/2)

T−1∑
t=0

(
xTt Qtxt + uTt Rtut

)
+ (1/2)xTTQTxT

I can solve exactly, since v?t is quadratic, µ?t is linear

I can compute J? exactly
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CE for LQR

I use ŵt = Ewt = 0 (i.e., neglect disturbance)

I for LQR, CE policy is actually optimal

I in LQR lecture we saw that optimal policy doesn’t depend on W

I choice W = 0 corresponds to deterministic problems in CE

I another hint that CE isn’t as dumb as it might first appear

I when Ewt 6= 0, CE policy is not optimal
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Constrained LQR

I same as LQR, but replace U = Rm with U = [−1, 1]m

I i.e., constrain control inputs to [−1, 1] (‘actuator limits’)

I cannot practically compute (or even represent) v?t , µ?t

I we don’t know optimal value J?
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CE for constrained linear-quadratic regulator

I CE policy usually called MPC for constrained LQR

I use ŵt = Ewt = 0

I evaluate µce
t (x) by solving (convex) quadratic program (QP)

minimize (1/2)
∑T−1
τ=t

(
xTτ Qτxτ + uTτ Rτuτ

)
+ (1/2)xTTQTxT

subject to xτ+1 = Axτ +Buτ , τ = t, . . . , T − 1
xτ ∈ Rn, uτ ∈ [−1, 1]m τ = t, . . . , T − 1
xt = x

with variables xt, . . . , xT , ut, . . . , uT−1

I find solution x̄t, . . . , x̄T , ūt, . . . , ūT−1

I execute first step in plan: µmpc
t (x) = ūt

I these QPs can be solved super fast (e.g., in microseconds)
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Example

consider example with

I n = 8 states, m = 2 inputs, horizon T = 50

I A,B chosen randomly, A scaled so maxi |λi(A)| = 1

I X = 3I, W = 1.5I

I Qt = I, Rt = I

I associated (unconstrained) LQR problem has

I ‖u‖∞ > 1 often

I J lqr = 85 (a lower bound on J lqr for constrained LQR problem)
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Example

I µclip
t (x) = (K lqr

t x)[−1,1] (‘saturated LQR control’)

I yields performance Jclip = 1641.8

I MPC policy µmpc
t (x)

I yields performance Jmpc = 1135.3

I we don’t know J? (other than J? > J lqr = 85)

I sophisticated lower bounding techniques can show Jmpc very near J?
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Sample traces
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Infinite horizon model predictive control

24



Infinite horizon MPC

I want approximate policy for infinite horizon average (or total) cost stochastic
control problem

I replace wt with some typical value ŵ (usually constant)

I in most cases, cannot solve resulting infinite horizon deterministic control
problem

I instead, solve the deterministic problem over a rolling horizon (or planning
horizon) from current time t to t+ T
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Infinite horizon MPC

I to evaluate µmpc(x), solve optimization problem

minimize
∑t+T−1
τ=t g(xτ , uτ ) + geoh(xt+T )

subject to xτ+1 = f(xτ , uτ , ŵ), τ = t, . . . , t+ T − 1
xt = x

with variables xt, . . . , xt+T , ut, . . . , ut+T−1

I find a solution x̄t, . . . , x̄t+T , ūt, . . . , ūt+T−1

I then umpc
t (xt) = ūt

I geoh is an end-of-horizon cost

I these optimization problems have the same size (cf. finite horizon MPC)

26



Infinite horizon MPC

I design parameters in MPC policy:

I disturbance predictions ŵt (typically constant)

I horizon length T

I end-of-horizon cost geoh

I some common choices: geoh(x) = 0, geoh(x) = minu g(x, u)

I performance of MPC policy evaluated by Monte Carlo simulation

I for T large enough, particular value of T and choice of geoh shouldn’t affect
performance very much
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Example: Supply chain management

I n nodes (warehouses/buffers)

I xt ∈ Rn is amount of commodity at nodes at time t

I m unidirectional links between nodes, external world

I ut ∈ Rm is amount of commodity transported along links at time t

I incoming and outgoing node incidence matrix:

A
in(out)
ij =

{
1 link j enters (exits) node i

0 otherwise

(include wholesale supply links and retail delivery links)

I dynamics: xt+1 = xt +Ainut −Aoutut
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Example: Supply chain management

I buffer limits: 0 ≤ xt ≤ xmax

I warehousing/storage cost: W (xt) = αTxt + βTx2t , α, β ≥ 0

I link capacities: 0 ≤ ut ≤ umax

I Aoutut ≤ xt (can’t ship out what’s not on hand)
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Example: Supply chain management

I shipping/transportation cost: S(ut) = S1((ut)1) + · · ·+ Sn((ut)m)

I for internode link, Si((ut)i) = γ(ut)i is transportation cost

I for wholesale supply link, Si((ut)i) = (pwh
t )i(ut)i is purchase cost

I for retail delivery link, Si((ut)i) = −pret min{(dt)i, (ut)i} is the negative
retail revenue, where pret is retail price and (dt)i is the demand

I we assume wholesale prices (pwh
t )i are IID, demands (dt)i are IID

I link flows ut chosen as function of xt, p
wh
t , dt

I objective: minimize average stage cost

J = lim
T→∞

1

T

T∑
t=0

(S(ut) +W (xt))
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Example

I n = 4 nodes, m = 8 links

I links 1,2 are wholesale supply; links 7,8 are retail delivery
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Example

I buffer capacities xmax = 3

I link flow capacities umax = 2

I storage cost parameters α = β = 0.01; γ = 0.05

I wholesale prices are log-normal with means 1, 1.2; variances 0.1, 0.2

I demands are log-normal with means 1, 0.8; variances , 0.4, 0.2

I retail price is pret = 2
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Example

I MPC parameters:

I future wholesale prices and retail demands assumed equal to their means
(current wholesale prices and demands are known)

I horizon T = 30

I end-of-horizon cost geoh = 0

I MPC problem is QP (and readily solved)

I results: average cost J = −1.69

I wholesale purchase cost 1.20

I retail delivery income −3.16

I lower bounding techniques for similar problems suggests MPC is very nearly
optimal
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MPC sample trajectory: supply
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MPC sample trajectory: delivery
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MPC sample trajectory
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MPC sample trajectory
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MPC with disturbance prediction
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Rolling disturbance estimates

I in MPC, we interpret ŵt as predictions of disturbance values

I no need to assume they are independent, or even random variables

I when wt are not independent (or interpreted as random variables), additional
information can improve predictions ŵt

I we let ŵt|s denote the updated estimate of wt made at time s using all
information available at time s

I these are called rolling estimates of wt

I ŵt|s can come from a statistical model, experts’ predictions, . . .

I MPC with rolling disturbance prediction works very well in practice, is used
in many applications (supply chain, finance)
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MPC architecture

I MPC (rolling horizon, with updated predictions) splits into two components

I the predictor uses all information available to make predictions of cur-
rent and future values of wt

I the planner optimizes actions over a planning horizon that extends into
the future, assuming the predictions are correct

I the MPC action is simply the current action in the current plan

I MPC is not optimal except in a few special cases

I but it often performs extremely well
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