EE365: Risk Averse Control

Risk averse optimization

Exponential risk aversion

Risk averse control

Risk averse optimization

Risk measures

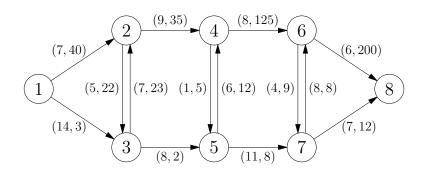
- suppose f is a random variable we'd like to be small (i.e., an objective or cost)
- ightharpoonup E f gives average or mean value
- \blacktriangleright many ways to quantify **risk** (of a large value of f)
 - $\qquad \qquad \mathbf{Prob}(f \geq f^{\mathrm{bad}}) \quad \text{ (value-at-risk, VAR)}$
 - $ightharpoonup \mathbf{E}(f-f^{\mathrm{bad}})_+$ (conditional value-at-risk, CVAR)
 - $ightharpoonup \mathbf{var} f = \mathbf{E}(f \mathbf{E} f)^2$ (variance)
 - ▶ $\mathbf{E}(f \mathbf{E} f)_+^2$ (downside variance)
 - ▶ $\mathbf{E} \phi(f)$, where ϕ is increasing and convex (when large f is good: expected utility $\mathbf{E} U(f)$ with increasing concave utility function U)
- \blacktriangleright risk aversion: we want $\mathbf{E} f$ small and low risk

Risk averse optimization

- \blacktriangleright now suppose random cost $f(x,\omega)$ is a function of a decision variable x and a random variable ω
- \blacktriangleright different choices of x lead to different values of mean cost $\mathbf{E}\,f(x,\omega)$ and risk $R(f(x,\omega))$
- ▶ there is typically a trade-off between minimizing mean cost and risk
- lacktriangle standard approach: minimize $\mathbf{E}\,f(x,\omega) + \lambda R(f(x,\omega))$
 - ▶ $\mathbf{E} f(x,\omega) + \lambda R(f(x,\omega))$ is the risk-adjusted mean cost
 - $\rightarrow \lambda > 0$ is called the **risk aversion parameter**
 - lacktriangle varying λ over $(0,\infty)$ gives trade-off of mean cost and risk
- lacktriangledown mean-variance optimization: choose x to minimize $\mathbf{E}\,f(x,\omega) + \lambda\,\mathbf{var}\,f(x,\omega)$

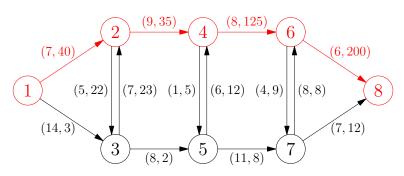
Example: Stochastic shortest path

- lacktriangleright find path in directed graph from vertex A to vertex B
- ▶ edge weights are independent random variables with known distributions
- commit to path beforehand, with no knowledge of weight values
- ▶ path length *L* is random variable
- ▶ minimize $\mathbf{E} L + \lambda \mathbf{var} L$, with $\lambda \geq 0$
- for fixed λ , reduces to deterministic shortest path problem with edge weights $\mathbf{E}\,w_e + \lambda\,\mathbf{var}\,w_e$

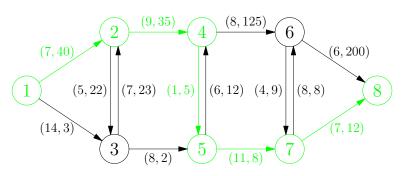


- lackbox find path from vertex A=1 to vertex B=8
- edge weights are lognormally distributed
- ightharpoonup edges labeled with mean and variance: $(\mathbf{E} w_e, \mathbf{var} w_e)$

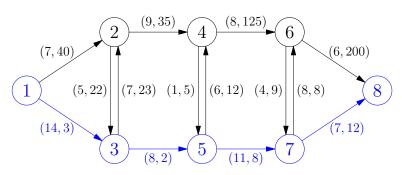
 $\lambda=0$: $\mathbf{E}\,L=30$, $\mathbf{var}\,L=400$



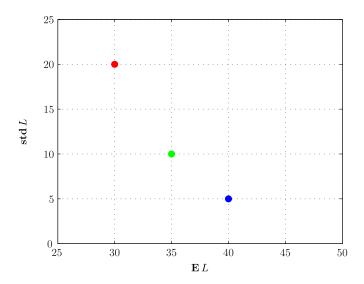
 $\lambda=0.05$: EL=35, var L=100



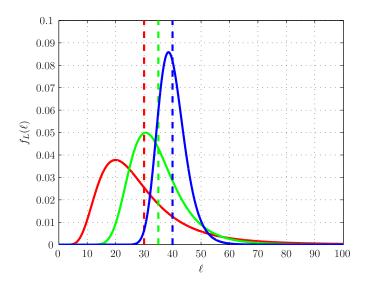
 $\lambda=10\colon \operatorname{\mathbf{E}} L=40$, $\operatorname{\mathbf{var}} L=25$



trade-off curve: $\lambda = 0$, $\lambda = 0.05$, $\lambda = 10$



distribution of L: $\lambda = 0$, $\lambda = 0.05$, $\lambda = 10$



- ▶ choose portfolio $x \in \mathbb{R}^n$
 - $ightharpoonup x_i$ is amount of asset i held (short position when $x_i < 0$)
- (random) asset return $r \in \mathbb{R}^n$ has known mean $\mathbf{E} r = \mu$, covariance $\mathbf{E} (r \mu)(r \mu)^T = \Sigma$
- lacktriangledown portfolio return is (random variable) $R=r^Tx$
 - ightharpoonup mean return is $\mathbf{E} R = \mu^T x$
 - ightharpoonup return variance is $\mathbf{var}\,R = x^T \Sigma x$
- ▶ maximize $\mathbf{E} R \gamma \mathbf{var} R = \mu^T x \gamma x^T \Sigma x$, 'risk adjusted (mean) return'
- $ightharpoonup \gamma > 0$ is risk aversion parameter

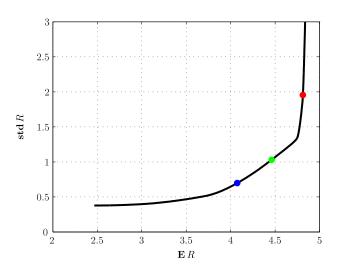
- > can add constraints such as
 - $\mathbf{1}^T x = 1$ (budget constraint)
 - $ightharpoonup x \ge 0$ (long positions only)
- ▶ can be solved as a (convex) quadratic program (QP)

$$\begin{array}{ll} \text{maximize} & \mu^T x - \gamma x^T \Sigma x \\ \text{subject to} & \mathbf{1}^T x = 1, \quad x \geq 0 \end{array}$$

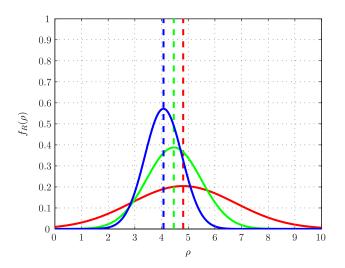
(or analytically without long-only constraint)

lacktriangle varying γ gives trade-off of mean return and risk

numerical example: n=30, $r \sim \mathcal{N}(\mu, \Sigma)$ trade-off curve: $\gamma = 10^{-2}$, $\gamma = 10^{-1}$, $\gamma = 1$



numerical example: n=30, $r\sim\mathcal{N}(\mu,\Sigma)$ distribution of portfolio return: $\gamma=10^{-2}$, $\gamma=10^{-1}$, $\gamma=1$



Exponential risk aversion

Exponential risk aversion

- suppose f is a random variable
- lacktriangle exponential risk measure, with parameter $\gamma>0$, is given by

$$R_{\gamma}(f) = \frac{1}{\gamma} \log \left(\mathbf{E} \exp(\gamma f) \right)$$

 $(R_{\gamma}(f) = \infty \text{ if } f \text{ is heavy-tailed})$

- $ightharpoonup \exp(\gamma f)$ term emphasizes large values of f
- $ightharpoonup R_{\gamma}(f)$ is (up to a factor of γ) the cumulant generating function of f
- we have

$$R_{\gamma}(f) = \mathbf{E} f + (\gamma/2) \mathbf{var} f + o(\gamma)$$

 \blacktriangleright so minimizing exponential risk is (approximately) mean-variance optimization, with risk aversion parameter $\gamma/2$

Exponential risk expansion

• use $\exp u = 1 + u + u^2/2 + \cdots$ to write

$$\mathbf{E}\exp(\gamma f) = 1 + \gamma \mathbf{E} f + (\gamma^2/2) \mathbf{E} f^2 + \cdots$$

• use $\log(1+u) = u - u^2/2 + \cdots$ to write

$$\log \mathbf{E} \exp(\gamma f) = \gamma \mathbf{E} f + (\gamma^2/2) \mathbf{E} f^2 - (1/2) \left(\gamma \mathbf{E} f + (\gamma^2/2) \right)^2 + \cdots$$

lacktriangle expand square, drop γ^3 and higher order terms to get

$$\log \mathbf{E} \exp(\gamma f) = \gamma \mathbf{E} f + (\gamma^2/2) \mathbf{E} f^2 - (\gamma^2/2) (\mathbf{E} f)^2 + \cdots$$

lacktriangle divide by γ to get

$$R_{\gamma}(f) = \mathbf{E} f + (\gamma/2) \operatorname{var} f + o(\gamma)$$

Properties

- $ightharpoonup R_{\gamma}(f) = \mathbf{E} f + (\gamma/2) \mathbf{var} f \text{ for } f \text{ normal}$
- $R_{\gamma}(a+f) = a + R_{\gamma}(f)$ for deterministic a
- $ightharpoonup R_{\gamma}(f)$ can be thought of as a variance adjusted mean, but in fact it's probably closer to what you really want (e.g., it penalizes deviations above the mean more than deviations below)
- ▶ monotonicity: if $f \leq g$, then $R_{\gamma}(f) \leq R_{\gamma}(g)$
- ▶ can extend idea to conditional expectation:

$$R_{\gamma}(f \mid g) = \frac{1}{\gamma} \log \mathbf{E}(\exp(\gamma f) \mid g)$$

Value at risk bound

- exponential risk gives an upper bound on VaR (value at risk)
- $\qquad \qquad \mathbf{ \blacktriangleright } \ \, \text{indicator function of} \,\, f \geq f^{\mathrm{bad}} \,\, \text{is} \,\, I^{\mathrm{bad}}(f) = \left\{ \begin{array}{ll} 0 & f < f^{\mathrm{bad}} \\ 1 & f \geq f^{\mathrm{bad}} \end{array} \right.$
- $\blacktriangleright \mathbf{E} I^{\mathrm{bad}}(f) = \mathbf{Prob}(f \ge f^{\mathrm{bad}})$
- for $\gamma > 0$, $\exp \gamma (f f^{\mathrm{bad}}) \ge I^{\mathrm{bad}}(f)$ (for all f)
- ightharpoonup so $\mathbf{E}\exp\gamma(f-f^{\mathrm{bad}})\geq\mathbf{E}\,I^{\mathrm{bad}}(f)$
- hence

$$\mathbf{Prob}(f \ge f^{\mathrm{bad}}) \le \exp \gamma (R_{\gamma}(f) - f^{\mathrm{bad}})$$

Risk averse control

Risk averse stochastic control

- ▶ dynamics: $x_{t+1} = f_t(x_t, u_t, w_t)$, with x_0, w_0, w_1, \ldots independent
- ▶ state feedback policy: $u_t = \mu_t(x_t)$, t = 0, ..., T-1
- risk averse objective:

$$J = \frac{1}{\gamma} \log \mathbf{E} \exp \gamma \left(\sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T) \right)$$

- $ightharpoonup g_t$ is stage cost; g_T is terminal cost
- $ightharpoonup \gamma > 0$ is risk aversion parameter
- ▶ risk averse stochastic control problem: find policy $\mu = (\mu_0, \dots, \mu_{T-1})$ that minimizes J

Interpretation

▶ total cost is random variable

$$C = \sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T)$$

- standard stochastic control minimizes E C
- ightharpoonup risk averse control minimizes $R_{\gamma}(C)$
- risk averse policy yields larger expected total cost than standard policy, but smaller risk

Risk averse value function

we are to minimize

$$J = R_{\gamma} \left(\sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T) \right)$$

over policies $\mu = (\mu_0, \dots, \mu_{T-1})$

define value function

$$V_t(x) = \min_{\mu_t, \dots, \mu_{T-1}} R_{\gamma} \left(\sum_{\tau=t}^{T-1} g_{\tau}(x_{\tau}, u_{\tau}) + g_{T}(x_{T}) \mid x_t = x \right)$$

- $V_T(x) = g_T(x)$
- \blacktriangleright could minimize over *input* u_t , *policies* $\mu_{t+1}, \ldots, \mu_{T-1}$
- lacktriangle same as usual value function, but replace ${f E}$ with R_γ

Risk averse dynamic programming

ightharpoonup optimal policy μ^{\star} is

$$\mu_t^{\star}(x) \in \underset{u}{\operatorname{argmin}} \left(g_t(x, u) + R_{\gamma} V_{t+1}(f_t(x, u, w_t)) \right)$$

where expectation in R_{γ} is over w_t

 \blacktriangleright (backward) recursion for V_t :

$$V_t(x) = \min_{u} (g_t(x, u) + R_{\gamma} V_{t+1}(f_t(x, u, w_t)))$$

 \blacktriangleright same as usual DP, but replace **E** with R_{γ} (both over w_t)

Multiplicative version

- ▶ precompute $h_t(x,u) = \exp \gamma g_t(x,u)$
- ▶ instead of V_t , change variables $W_t(x) = \exp \gamma V_t(x)$

▶ DP recursion is

$$W_t(x) = \min_{u} \left(h_t(x, u) \mathbf{E} W_{t+1} \left(f_t(x, u, w_t) \right) \right)$$

optimal policy is

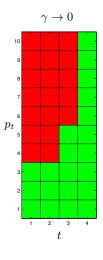
$$\mu_t^{\star}(x) \in \underset{u}{\operatorname{argmin}} (h_t(x, u) \mathbf{E} W_{t+1}(f_t(x, u, w_t)))$$

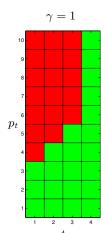
Example: Optimal purchase

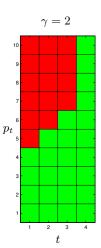
- lacktriangleright must buy an item in one of T=4 time periods
- lacktriangle prices are IID with p_t^2 uniformly distributed on $\{1,\ldots,10\}$
- ▶ in each time period, the price is revealed and you choose to buy or wait
 - once you've bought the item, your only option is to wait
 - ▶ in the last period, you must buy the item if you haven't already

Example: Optimal purchase

optimal policy: wait, buy







Example: Optimal purchase

distribution of purchase price: $\gamma \rightarrow 0$, $\gamma = 1$, $\gamma = 2$

