EE365: Risk Averse Control

Risk averse optimization
Exponential risk aversion

Risk averse control



Risk averse optimization



Risk measures

» suppose f is a random variable we'd like to be small
(i.e., an objective or cost)

» E f gives average or mean value
» many ways to quantify risk (of a large value of f)

Prob(f > f*24)  (value-at-risk, VAR)

E(f — >,  (conditional value-at-risk, CVAR)
var f = E(f —Ef)> (variance)

E(f —Ef)%1 (downside variance)

E &(f), where ¢ is increasing and convex
(when large f is good: expected utility EU(f) with increasing concave
utility function U)

vV v.v. v Y

» risk aversion: we want E f small and low risk



Risk averse optimization

» now suppose random cost f(z,w) is a function of a decision variable = and a
random variable w

» different choices of x lead to different values of mean cost E f(x,w) and risk

R(f(z,w))
» there is typically a trade-off between minimizing mean cost and risk
» standard approach: minimize E f(z,w) + AR(f(z,w))

» E f(z,w) + AR(f(z,w)) is the risk-adjusted mean cost
» A > 0 is called the risk aversion parameter

» varying A over (0,00) gives trade-off of mean cost and risk

» mean-variance optimization: choose x to minimize E f(z,w)+ )\ var f(z,w)



Example: Stochastic shortest path

» find path in directed graph from vertex A to vertex B

» edge weights are independent random variables with known distributions
» commit to path beforehand, with no knowledge of weight values

» path length L is random variable

» minimize EL + Avar L, with A >0

» for fixed A, reduces to deterministic shortest path problem with edge weights
E w. + )\ var w,



Stochastic shortest path

» find path from vertex A =1 to vertex B =8
» edge weights are lognormally distributed

» edges labeled with mean and variance: (E w., var w.)



Stochastic shortest path

A=0: EL =30, var L = 400




Stochastic shortest path

A=0.05: EL =35, var L = 100




Stochastic shortest path

A=10: EL =40, var L = 25




Stochastic shortest path
trade-off curve: A =0, A — 0.05, A =10
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Stochastic shortest path
distribution of L: A =0, A = 0.05, A =10

0.1
0.09 |
0.08 |
0.071
0.06

fr(0)
(e}
S

0.04 |
0.03 1
0.02

0.01}




Example: Mean-variance (Markowitz) portfolio optimization

v

choose portfolio x € R™

» z; is amount of asset 4 held (short position when z; < 0)

v

(random) asset return 7 € R™ has known mean Er = p,
covariance E (r — p)(r — )T =X

portfolio return is (random variable) R = r'z

v

» mean return is ER = p"x

» return variance is var R = z7 Xz
» maximize ER — yvar R = u"« — vaT 3z, ‘risk adjusted (mean) return’

» v > 0 is risk aversion parameter
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Example: Mean-variance (Markowitz) portfolio optimization

» can add constraints such as

» 17z =1 (budget constraint)
» z > 0 (long positions only)

» can be solved as a (convex) quadratic program (QP)

maximize pTz — vz Sz
subject to 1Tz =1, z>0

(or analytically without long-only constraint)

» varying -y gives trade-off of mean return and risk
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Example: Mean-variance (Markowitz) portfolio optimization

numerical example: n = 30, r ~ N (p, )
trade-off curve: v =1072, v = 10 ', y =1
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Example: Mean-variance (Markowitz) portfolio optimization

numerical example: n =30, r ~ N (11, %)

distribution of portfolio return: v =102, v =10 ', v =1
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Exponential risk aversion
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Exponential risk aversion

» suppose f is a random variable

» exponential risk measure, with parameter v > 0, is given by

Ry(f) = %10g (Bexp(v/))

(Ry(f) = oo if f is heavy-tailed)
» exp(vf) term emphasizes large values of f
» R.,(f) is (up to a factor of v) the cumulant generating function of f

» we have
Ry(f) =Ef+(v/2)var f +o(v)

» so minimizing exponential risk is (approximately) mean-variance optimization,
with risk aversion parameter /2
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Exponential risk expansion

> use expu = 1+u+u?/2+--- to write

Eexp(7f) =1+7Ef+ (/2 Ef +- -

use log(1 +u) = u —u®/2 +--- to write

v

logEexp(vf) =vEf+ (+*/2)Ef2 — (1/2) WE f + (+3/2))" + - --

expand square, drop 7> and higher order terms to get

logEexp(vf) =vEf+ (Y} /2)Ef* — (*/2)(Bf)* + - --

v

v

divide by v to get

Ry(f) =E f 4 (v/2) var f + o(v)
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Properties

» R\(f)=Ef+ (y/2) var f for f normal
» R (a+ f) =a+ Ry(f) for deterministic a

» R.,(f) can be thought of as a variance adjusted mean, but in fact it's probably
closer to what you really want (e.g., it penalizes deviations above the mean
more than deviations below)

» monotonicity: if f < g, then R,(f) < R,(g)

» can extend idea to conditional expectation:

Ry(f | g) = %10g E(exp(1/) | 9)
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Value at risk bound

» exponential risk gives an upper bound on VaR (value at risk)

0 f < fbad
1of>pm

» indicator function of f > fP* s 1”2d(f) = {
» E"(f) = Prob(f > f9)

> for v >0, expy(f — f°*) > I"(f) (for all f)
» so Eexpy(f — fP24) > ET1°4(f)

» hence
Prob(f > ™) < expy(R,(f) — f**9)
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Risk averse control
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Risk averse stochastic control

| g dynamics: Tit1 = ft(xt,ut,wt), with o, W0, Wiy
» state feedback policy: u¢ = pe(x¢), t=0,..., T —1
» risk averse objective:

T-1

t=0

independent

1
J = ; log E expy <Z gi(me,ue) + gT(xT)>

» g; is stage cost; gr is terminal cost

» v > 0 is risk aversion parameter

» risk averse stochastic control problem:
find policy u = (o, - .., pr—1) that minimizes J
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Interpretation

» total cost is random variable
T—1
C =Y gi(ws,u) + gr(zr)
t=0
» standard stochastic control minimizes E C

» risk averse control minimizes R, (C)

» risk averse policy yields larger expected total cost than standard policy, but
smaller risk
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Risk averse value function

» we are to minimize
T—1
J =R,y <Z ge(@e, ue) + QT(JUT)>
t=0
over policies 1 = (o, .., pr—1)

» define value function

Htyeos hT —1

Vi(z)= min R, <ng(mﬁuf)+gT(wT)

T=t
> Vr(z) = gr(z)
» could minimize over input w:, policies 41, ..., WT—1

» same as usual value function, but replace E with R,

J?t—l')
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Risk averse dynamic programming

» optimal policy p* is
p (z) € argmin (g (z,u) + Ry Vi1 (fr(w,u, wy)))

where expectation in R, is over w;
» (backward) recursion for V;:

V() = min (g (2, u) + By Verr (fe(@, u, we)))

» same as usual DP, but replace E with R, (both over w;)
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Multiplicative version

» precompute hi(z,u) = expyge(z, u)

» instead of V;, change variables W;(z) = expyV:(z)

» DP recursion is

Wi(z) = muin(ht (z,u) EWipa (fe(z, u, wy)))

optimal policy is

v

p: (z) € argmin (he(z, u) E Wi (fi(@,u,w)))
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Example: Optimal purchase

» must buy an item in one of T" = 4 time periods
» prices are IID with p? uniformly distributed on {1,...,10}
» in each time period, the price is revealed and you choose to buy or wait

» once you've bought the item, your only option is to wait

» in the last period, you must buy the item if you haven't already
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Example: Optimal purchase

optimal policy: wait, buy

v—0
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Example: Optimal purchase

distribution of purchase price: v — 0,
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