EE365: Structure of Markov Chains

Distribution propagation

- distribution propagation $\pi_{t+1} = \pi_t P$
- \blacktriangleright to find distribution of final states, compute $\pi_{\rm ss} = \lim_{t \to \infty} \pi_t$
- called the steady-state distribution

• given by
$$\pi_{ss} = \pi_0 L$$
 where $L = \lim_{t \to \infty} P^t$

Example: absorption probabilities

 $\blacktriangleright \ \pi_{\rm ss} = \pi_0 L$

 \blacktriangleright so initial state *i* leads to steady state distribution given by *i*th row of *L*,

▶ e.g., L_{i6} is the probability of being captured by state 6 given $x_0 = i$

Example: absorption probabilities

Example: convergence

$$\blacktriangleright L = \frac{1}{16} \begin{bmatrix} 3 & 5 & 5 & 3 \\ 3 & 5 & 5 & 3 \\ 3 & 5 & 5 & 3 \\ 3 & 5 & 5 & 3 \end{bmatrix}$$

▶ in this case, L has the special form $L = 1\pi_{ss}$

• π_t converges to π_{ss} from any initial state

Irreducible matrices

P is called *irreducible* or *strongly connected* if

for every $i,j\in \mathcal{X}$ with $i\neq j$ there are paths $i\rightarrow j$ and $j\rightarrow i$

Irreducible components

- states can be grouped into communicating classes
- ▶ i, j are in the same class if there are paths $i \rightarrow j$ and $j \rightarrow i$
- a class with outgoing edges is called *transient*, otherwise it is called *recurrent* or *closed*

Irreducible components

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 & 0 & 0\\ 0.25 & 0 & 0.25 & 0 & 0.5\\ 0.5 & 0 & 0 & 0.5 & 0\\ & & & 0.25 & 0.75\\ & & & 0.5 & 0.5 \end{bmatrix}$$

$$\lim_{t \to \infty} P^t = \begin{bmatrix} 0 & 0 & 0 & 0.4 & 0.6 \\ 0 & 0 & 0 & 0.4 & 0.6 \\ 0 & 0 & 0 & 0.4 & 0.6 \\ 0 & 0 & 0 & 0.4 & 0.6 \\ 0 & 0 & 0 & 0.4 & 0.6 \end{bmatrix}$$

•
$$(\pi_t)_i \to 0$$
 for *i* in the transient class

General structure

every Markov chain can be decomposed as

- ► *transient classes*: *P*₁₁ is block upper triangular, with irreducible blocks on the diagonal
- \blacktriangleright closed classes: P_{22} is block diagonal, with irreducible blocks

Irreducible components

for this example, P^t does not converge to the form $\mathbf{1}\pi$

$$\lim_{t \to \infty} P^t = \begin{bmatrix} 0 & 0 & 0 & 0.25 & 0.125 & 0.125 & 0.5 \\ 0 & 0 & 0 & 0.3 & 0.15 & 0.15 & 0.4 \\ 0 & 0 & 0 & 0.35 & 0.175 & 0.175 & 0.3 \\ 0 & 0 & 0 & 0.5 & 0.25 & 0.25 & 0 \\ 0 & 0 & 0 & 0.5 & 0.25 & 0.25 & 0 \\ 0 & 0 & 0 & 0.5 & 0.25 & 0.25 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Pathological cases

there are pathological cases where neither P^t nor π_t converge, *e.g.*,

$$1 \qquad P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Some results that we won't need ...

- P is called *regular* if $P^t > 0$ for some $t \ge 0$
- ▶ if P is irreducible, then P^t converges if and only if it is regular. Then

$$\lim_{t\to\infty} P^t = \mathbf{1}\pi_{\mathsf{ss}}$$

 \blacktriangleright P^t converges iff every closed class is regular

Limit of powers

if P^t converges

$$L = \lim_{t \to \infty} P^t = \begin{bmatrix} 0 & (I - P_{11})^{-1} P_{12} L_{22} \\ 0 & L_{22} \end{bmatrix}$$

►
$$P_{11}^t \to 0$$

► $P_{22}^t \to \operatorname{diag}(\mathbf{1}\pi_{\operatorname{inv}}^{(1)}, \dots, \mathbf{1}\pi_{\operatorname{inv}}^{(k)}) = L_{22}$
► $PL = L$, hence
 $\begin{bmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{bmatrix} \begin{bmatrix} 0 & L_{12} \\ 0 & L_{22} \end{bmatrix} = \begin{bmatrix} 0 & L_{12} \\ 0 & L_{22} \end{bmatrix}$

and so $P_{11}L_{12} + P_{12}L_{22} = L_{12}$ from which L_{12} is as above