EE365: Structure of Markov Chains

Distribution propagation

- distribution propagation $\pi_{t+1}=\pi_{t} P$
- to find distribution of final states, compute $\pi_{\mathrm{ss}}=\lim _{t \rightarrow \infty} \pi_{t}$
- called the steady-state distribution
- given by $\pi_{\mathrm{ss}}=\pi_{0} L$ where $L=\lim _{t \rightarrow \infty} P^{t}$

Example: absorption probabilities

$$
\begin{aligned}
& P=\left[\begin{array}{ccccccc}
0.3 & 0.3 & 0 & 0 & 0 & 0 & 0.4 \\
0.4 & 0.3 & 0.3 & 0 & 0 & 0 & 0 \\
0 & 0.4 & 0.3 & 0.3 & 0 & 0 & 0 \\
0 & 0 & 0.4 & 0.3 & 0.3 & 0 & 0 \\
0 & 0 & 0 & 0.4 & 0.3 & 0.3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad L=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0.07 & 0.93 \\
0 & 0 & 0 & 0 & 0 & 0.17 & 0.83 \\
0 & 0 & 0 & 0 & 0 & 0.30 & 0.70 \\
0 & 0 & 0 & 0 & 0 & 0.47 & 0.53 \\
0 & 0 & 0 & 0 & 0 & 0.70 & 0.30 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- $\pi_{\mathrm{ss}}=\pi_{0} L$
- so initial state i leads to steady state distribution given by i th row of L,
- e.g., $L_{i 6}$ is the probability of being captured by state 6 given $x_{0}=i$

Example: absorption probabilities

Example: convergence

$L=\frac{1}{16}\left[\begin{array}{llll}3 & 5 & 5 & 3 \\ 3 & 5 & 5 & 3 \\ 3 & 5 & 5 & 3 \\ 3 & 5 & 5 & 3\end{array}\right]$

- in this case, L has the special form $L=1 \pi_{\text {ss }}$
- π_{t} converges to $\pi_{\text {ss }}$ from any initial state

Irreducible matrices

P is called irreducible or strongly connected if
for every $i, j \in \mathcal{X}$ with $i \neq j$ there are paths $i \rightarrow j$ and $j \rightarrow i$

Irreducible components

$$
P=\left[\begin{array}{ccccc}
0.5 & 0.5 & 0 & 0 & 0 \\
0.25 & 0 & 0.25 & 0 & 0.5 \\
0.5 & 0 & 0 & 0.5 & 0 \\
& & & 0.25 & 0.75 \\
& & & 0.5 & 0.5
\end{array}\right]
$$

- states can be grouped into communicating classes
- i, j are in the same class if there are paths $i \rightarrow j$ and $j \rightarrow i$
- a class with outgoing edges is called transient, otherwise it is called recurrent or closed

Irreducible components

$$
P=\left[\begin{array}{ccccc}
0.5 & 0.5 & 0 & 0 & 0 \\
0.25 & 0 & 0.25 & 0 & 0.5 \\
0.5 & 0 & 0 & 0.5 & 0 \\
& & & 0.25 & 0.75 \\
& & & 0.5 & 0.5
\end{array}\right]
$$

$$
\lim _{t \rightarrow \infty} P^{t}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0 & 0.4 & 0.6
\end{array}\right]
$$

- $\left(\pi_{t}\right)_{i} \rightarrow 0$ for i in the transient class

General structure

every Markov chain can be decomposed as

- transient classes: P_{11} is block upper triangular, with irreducible blocks on the diagonal
- closed classes: P_{22} is block diagonal, with irreducible blocks

Irreducible components

for this example, P^{t} does not converge to the form $\mathbf{1} \pi$

$$
\lim _{t \rightarrow \infty} P^{t}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0.25 & 0.125 & 0.125 & 0.5 \\
0 & 0 & 0 & 0.3 & 0.15 & 0.15 & 0.4 \\
0 & 0 & 0 & 0.35 & 0.175 & 0.175 & 0.3 \\
0 & 0 & 0 & 0.5 & 0.25 & 0.25 & 0 \\
0 & 0 & 0 & 0.5 & 0.25 & 0.25 & 0 \\
0 & 0 & 0 & 0.5 & 0.25 & 0.25 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Pathological cases

there are pathological cases where neither P^{t} nor π_{t} converge, e.g.,

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Some results that we won't need ...

- P is called regular if $P^{t}>0$ for some $t \geq 0$
- if P is irreducible, then P^{t} converges if and only if it is regular. Then

$$
\lim _{t \rightarrow \infty} P^{t}=1 \pi_{\mathrm{ss}}
$$

- P^{t} converges iff every closed class is regular

Limit of powers

if P^{t} converges

$$
L=\lim _{t \rightarrow \infty} P^{t}=\left[\begin{array}{cc}
0 & \left(I-P_{11}\right)^{-1} P_{12} L_{22} \\
0 & L_{22}
\end{array}\right]
$$

- $P_{11}^{t} \rightarrow 0$
- $P_{22}^{t} \rightarrow \operatorname{diag}\left(\mathbf{1} \pi_{\text {inv }}^{(1)}, \ldots, \mathbf{1} \pi_{\text {inv }}^{(k)}\right)=L_{22}$
- $P L=L$, hence

$$
\left[\begin{array}{cc}
P_{11} & P_{12} \\
0 & P_{22}
\end{array}\right]\left[\begin{array}{ll}
0 & L_{12} \\
0 & L_{22}
\end{array}\right]=\left[\begin{array}{ll}
0 & L_{12} \\
0 & L_{22}
\end{array}\right]
$$

and so $P_{11} L_{12}+P_{12} L_{22}=L_{12}$ from which L_{12} is as above

