EE365: Value

Value function

- suppose you will receive a reward $g\left(x_{1}\right)$ depending on the state at $t=1$
- how much should you pay at time $t=0$ be in state i ?

Define the value of state i, given by v_{i}, to be

$$
v_{i}=\mathbf{E}\left(g\left(x_{1}\right) \mid x_{0}=i\right)
$$

(the term 'value' makes more sense when g_{t} is a reward, not a cost)

Value function

we have

$$
\begin{aligned}
v_{i} & =\mathbf{E}\left(g\left(x_{1}\right) \mid x_{0}=i\right) \\
& =\sum_{j \in \mathcal{X}} \operatorname{Prob}\left(x_{1}=j \mid x_{0}=i\right) g_{j} \\
& =(P g)_{i}
\end{aligned}
$$

- $v=P g$ is the current value of reward g at the next time step (costs)
- left multiplication by P maps future reward back one step
- v_{i} is a weighted average of value of g at children of i
- recall right multiplication of π_{t} by P maps distribution forwards one step

Value propagation

suppose we iterate

$$
\begin{aligned}
v_{0} & =g \\
v_{k+1} & =P v_{k} \quad \text { for } k=0,1, \ldots
\end{aligned}
$$

- $\left(v_{k}\right)_{i}$ is the value of starting at state $x_{0}=i$ if we are rewarded at time $t=k$
- $\left(v_{k}\right)_{i}=\mathbf{E}\left(g\left(x_{k}\right) \mid x_{0}=i\right)$
- subscripts k, t denote times or iterations, so v_{k} is a vector
- subscripts i, j denote components, so v_{i} is the i 'th component of v

Terminal costs

$$
J=\lim _{t \rightarrow \infty} \mathbf{E}\left(g\left(x_{t}\right)\right)
$$

- we are rewarded when the state is absorbed
- we can evaluate J by distribution propagation

$$
\begin{aligned}
J & =\left(\lim _{t \rightarrow \infty} \pi_{0} P^{t}\right) g \\
& =\pi_{\mathrm{ss}} g
\end{aligned}
$$

- $\pi_{\text {ss }}$ gives probability distribution for where the state is absorbed

Terminal cost by value iteration

$$
J=\lim _{t \rightarrow \infty} \mathbf{E}\left(g\left(x_{t}\right)\right)
$$

- alternatively, can evaluate J by value iteration

$$
\begin{aligned}
J & =\pi_{0}\left(\lim _{t \rightarrow \infty} P^{t} g\right) \\
& =\pi_{0} v_{\mathrm{ss}}
\end{aligned}
$$

- initialize $v_{0}=g$ and iterate $v_{k+1}=P v_{k}$
- converges to steady state value $v_{\mathrm{ss}}=\lim _{k \rightarrow \infty} P^{k} g$ (if P^{k} converges)
- $\left(v_{\mathrm{ss}}\right)_{i}$ gives value of starting in state $x_{0}=i$

Example: random walk

- random walk on a 2-dimensional 30×30 grid, with square obstacle
- outer boundaries are absorbing
- boundary costs are 1, 2, 6, 10

Transition probabilities

2 different cases:

probability of staying at current state: $1 / 10$

Distribution propagation

$$
k=20
$$

$$
k=30
$$

$$
k=40
$$

$$
k=100
$$

$$
k=200
$$

$$
k=300
$$

$$
k=400
$$

Steady state distribution

for the initial state $i=(12,18)$, the i th row of L is below

Value function

Steady state value function

since $v_{\mathrm{ss}}=P v_{\mathrm{ss}}$, the value function takes its max and min at the absorbing states

Harmonic functions

- suppose all closed classes are absorbing states, so $P_{22}=I$
- cost g is nonzero only on absorbing states
- steady-state value function v is unique solution to

$$
\begin{aligned}
v & =P v \\
v_{i} & =g_{i} \quad \text { if } i \text { is absorbing }
\end{aligned}
$$

- the matrix $I-P$ is called the discrete Laplacian
- a function v satisfying $v=P v$ is called a harmonic function
- called a Dirichlet boundary value problem

