# EE365: Value

### Value function

- ▶ suppose you will receive a reward  $g(x_1)$  depending on the state at t = 1
- how much should you pay at time t = 0 be in state *i*?

Define the *value* of state i, given by  $v_i$ , to be

$$v_i = \mathbf{E}\big(g(x_1) \mid x_0 = i\big)$$

(the term 'value' makes more sense when  $g_t$  is a reward, not a cost)

#### Value function

we have

$$v_i = \mathbf{E}(g(x_1) \mid x_0 = i)$$
$$= \sum_{j \in \mathcal{X}} \mathbf{Prob}(x_1 = j \mid x_0 = i)g_j$$
$$= (Pg)_i$$

- ▶ v = Pg is the current value of reward g at the next time step (costs)
- ▶ *left* multiplication by *P* maps future reward back one step
- ▶  $v_i$  is a *weighted average* of value of g at children of i
- ▶ recall *right* multiplication of  $\pi_t$  by *P* maps distribution forwards one step

### Value propagation

suppose we iterate

$$v_0 = g$$
  
 $v_{k+1} = Pv_k$  for  $k = 0, 1, \dots$ 

•  $(v_k)_i$  is the value of starting at state  $x_0 = i$  if we are rewarded at time t = k

$$\triangleright (v_k)_i = \mathbf{E} \big( g(x_k) \mid x_0 = i \big)$$

- subscripts k, t denote times or iterations, so  $v_k$  is a vector
- $\blacktriangleright$  subscripts *i*, *j* denote components, so  $v_i$  is the *i*'th component of v

#### **Terminal costs**

$$J = \lim_{t \to \infty} \mathbf{E}(g(x_t))$$

#### we are rewarded when the state is absorbed

▶ we can evaluate J by *distribution propagation* 

$$J = \left(\lim_{t \to \infty} \pi_0 P^t\right) g$$
$$= \pi_{ss} g$$

 $\blacktriangleright$   $\pi_{\rm ss}$  gives probability distribution for where the state is absorbed

#### Terminal cost by value iteration

$$J = \lim_{t \to \infty} \mathbf{E}(g(x_t))$$

alternatively, can evaluate J by value iteration

$$J = \pi_0 \left( \lim_{t \to \infty} P^t g \right)$$
$$= \pi_0 v_{ss}$$

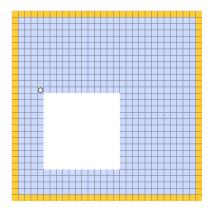
• initialize  $v_0 = g$  and iterate  $v_{k+1} = Pv_k$ 

▶ converges to steady state value  $v_{ss} = \lim_{k \to \infty} P^k g$  (if  $P^k$  converges)

•  $(v_{ss})_i$  gives value of starting in state  $x_0 = i$ 

#### Example: random walk

- $\blacktriangleright$  random walk on a 2-dimensional  $30 \times 30$  grid, with square obstacle
- outer boundaries are absorbing
- ▶ boundary costs are 1, 2, 6, 10



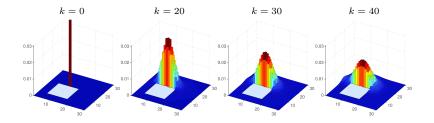
# **Transition probabilities**

2 different cases:



probability of staying at current state: 1/10

# **Distribution propagation**

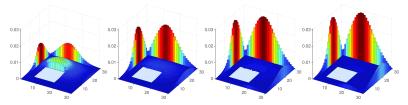


k = 100

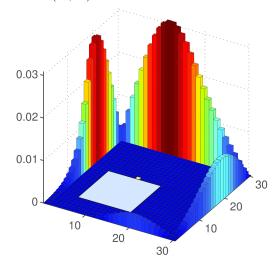


k = 300

k = 400

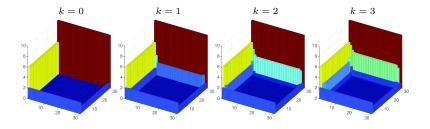


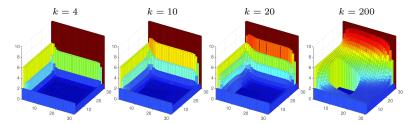
### Steady state distribution



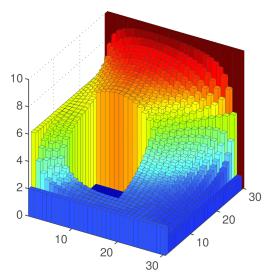
for the initial state i = (12, 18), the ith row of L is below

### Value function





### Steady state value function



since  $v_{\rm ss} = P v_{\rm ss}$ , the value function takes its max and min at the absorbing states

### Harmonic functions

- ▶ suppose all closed classes are absorbing states, so  $P_{22} = I$
- $\blacktriangleright$  cost g is nonzero only on absorbing states
- $\blacktriangleright$  steady-state value function v is unique solution to

v = Pv $v_i = g_i$  if *i* is absorbing

- the matrix I P is called the *discrete Laplacian*
- ▶ a function v satisfying v = Pv is called a *harmonic function*
- called a Dirichlet boundary value problem