6 - Classification

- Examples: radar system, binary transmission, OCR , spam filtering
- The classification problem
- Transition matrices and Bayes rule
- The importance of prior probabilities
- The MAP classifier and example
- Decision regions
- Example: gold coins
- Error analysis and the MAP classifier
- Cost functions and example
- Trade-offs and the Neyman-Pearson cost function
- Example: weighted-sum objective
- The operating characteristic
- Conditional errors and maximum likelihood

Example: Radar System

A radar system sends out n pulses, and receives y reflections, where $0 \le y \le n$. Ideally, y = n if an aircraft is present, and y = 0 otherwise.

In practice, reflections may be lost, or noise may be mistaken for reflections.

So we have two probability mass functions

 $p_1(y)$ = the probability of receiving y reflections when there are no aircraft present $p_2(y)$ = the probability of receiving y reflections when there is an aircraft present

If we measure y_{meas} reflections, how do we decide if an aircraft is present?

Example: Radar System

If there are fewer than 6 reflections, an aircraft is not present. If there are more than 11 reflections, an aircraft is present.

We would like to choose a *threshold* value, based on

- probabilities of errors; false-positives and false-negatives
- Costs assigned to these events

Other Examples

- *Binary transmission channel:* A binary bit is sent to us across a communication channel.
 - If a 1 is sent, then with probability $0.8 \ {\rm a} \ 1$ is received, and probability $0.2 \ {\rm a} \ 0$ is received
 - If a 0 is sent, then with probability $0.1 \ {\rm a} \ 1$ is received, and probability $0.9 \ {\rm a} \ 0$ is received

We measure the received bit, and would like to determine which bit was sent.

- *Optical character recognition:* We measure various features of a character in an optical system, such as
 - the width of the character
 - the ratio of black pixels to white pixels

Which of the characters A, B, \ldots, Z is it?

• *Spam filtering:* we measure which words are contained in the email. We would like to determine if the email is spam or not.

The Classification Problem

- X_1, \ldots, X_n are events that partition Ω , called *hypotheses*
- Y_1, \ldots, Y_m are events that partition Ω , called *observations*

The *outcome* of the experiment is $\omega \in \Omega$

- ω lies in *exactly one* of the events X_j and exactly one of the events Y_i
- In other words, exactly one 'hypothesis is true' and exactly one observation occurs

The *decision* or *classification* problem is as follows:

- We *measure* which of the Y_i the outcome lies in, say $Y_{i_{meas}}$
- We would like to pick j_{est} to *estimate* which X_j contains ω

Transition Matrices

We have a *transition matrix* $A \in \mathbb{R}^{m \times n}$

 $A_{ij} = \operatorname{\mathbf{Prob}}(Y_i \mid X_j)$

The matrix A is also called the *likelihood matrix*.

We can represent it as a *bipartite graph*, e.g.,

$$A = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.3 \\ 0 & 0.5 \end{bmatrix}$$

• A is elementwise nonnegative and the sum of each column is one, i.e.,

$$A \succeq 0$$
 and $\mathbf{1}^T A = \mathbf{1}^T$

A matrix with these properties is called *column stochastic*.

Conditional Probability

We would like to know

$$B_{i_{\mathsf{meas}},j} = \mathbf{Prob}(X_j \mid Y_{i_{\mathsf{meas}}})$$

- $\mathbf{Prob}(X_j \mid Y_{i_{meas}})$ is called the *a*-posteriori probability
- We will have a *different pmf* for each value of i_{meas}
- Once we have computed the a-posteriori pmf, we can pick an *estimate*, i.e., a value for j_{est}
- The estimate is usually chosen to minimize a *cost function*

Bayes Rule

For any events $A, B \subset \Omega$ with $\mathbf{Prob}(B) \neq 0$, Bayes rule is

$$\mathbf{Prob}(A \mid B) = \frac{\mathbf{Prob}(B \mid A) \, \mathbf{Prob}(A)}{\mathbf{Prob}(B)}$$

Because if $\operatorname{\mathbf{Prob}}(B) \neq 0$, then

$$\operatorname{\mathbf{Prob}}(A \mid B) = \frac{\operatorname{\mathbf{Prob}}(A \cap B)}{\operatorname{\mathbf{Prob}}(B)}$$

and so

$$\operatorname{Prob}(A \mid B) \operatorname{Prob}(B) = \operatorname{Prob}(B \mid A) \operatorname{Prob}(A)$$

Bayes Rule

The *Law of Total Probability* says that since X_1, \ldots, X_m partition Ω , we have for any event A

$$\operatorname{\mathbf{Prob}}(A) = \sum_{j=1}^{m} \operatorname{\mathbf{Prob}}(A \cap X_j)$$

Now by Bayes rule, we have

$$\operatorname{Prob}(X_j \mid Y_i) = \frac{\operatorname{Prob}(Y_i \mid X_j) \operatorname{Prob}(X_j)}{\operatorname{Prob}(Y_i)}$$
$$= \frac{\operatorname{Prob}(Y_i \mid X_j) \operatorname{Prob}(X_j)}{\sum_{k=1}^m \operatorname{Prob}(Y_i \cap X_k)}$$

and therefore the *a-posteriori probability* is

$$\operatorname{Prob}(X_j \mid Y_i) = \frac{\operatorname{Prob}(Y_i \mid X_j) \operatorname{Prob}(X_j)}{\sum_{k=1}^{m} \operatorname{Prob}(Y_i \mid X_k) \operatorname{Prob}(X_k)}$$

6 - 10 Classification

Problem Data

We start with

- the prior distribution $x_j = \operatorname{Prob}(X_j)$ for $j = 1, \ldots, n$
- the transition probabilities $A_{ij} = \operatorname{Prob}(Y_i | X_j)$ for $i = 1, \dots, m$ and $j = 1, \dots, n$

From these we can find

- the *a*-posteriori probabilities $B_{ij} = \mathbf{Prob}(X_j | Y_i)$
- the marginal pmf $y_i = \operatorname{Prob}(Y_i)$
- and the *joint distribution* $J_{ij} = \mathbf{Prob}(Y_i \cap X_j)$

We have

$$y = Ax$$
 $B_{ij} = \frac{J_{ij}}{y_i}$ $J_{ij} = A_{ij}x_j$

Example: Prior Probabilities

Why do we need prior probabilities? The following is the standard example.

Suppose we have a test for cancer, which has the following *accuracy*

- if the patient does not have cancer, then the probability of a negative result is 0.97, and of positive result is 0.03.
- if the patient has cancer, then the probability of a negative result is 0.02, and of a positive result is 0.98.

These are the *transition probabilities*

Suppose a patient takes this test. The probability of not having cancer is 0.992, and hence the probability of having cancer is 0.008.

These are the *prior probabilities*.

Example: Prior Probabilities

Imagine 10,000 patients take this test.

- On average, 80 of these people will have cancer (0.008 probability) and since 98% of them will test positive, we will have 78 positive tests
- Of the 9,920 cancerless patients, 3% of them will test positive, giving a further 297 positive tests
- Hence of the total 375 positive tests, most (297) are false positives.
- The conditional probability of having cancer given that one tests positive is 78/375 = 0.208

Example: Prior Probabilities

The transition matrix is

$$A = \begin{bmatrix} 0.97 & 0.02 \\ 0.03 & 0.98 \end{bmatrix}$$

The joint probabilities are

		no cancer	cancer
J =	test is negative	0.96224	0.00016
	test is positive	0.02976	0.00784

But the conditional probabilities are

		no cancer	cancer
B =	test is negative	0.999834	0.000166251
	test is positive	0.791489	0.208511

So given that the patient tests positive, the chances of having cancer are only 20% *Without a prior, one cannot draw any conclusion.*

Classifiers

We would like to find a *classifier*, that is a map $f_{est} : \{1, \ldots, m\} \rightarrow \{1, \ldots, n\}$ which

if we observe event Y_i , then we estimate that event X_j occurred, where $j = f_{est}(i)$

- Notice that *classification* is deliberately throwing away information, since we have the conditional probabilities $\operatorname{Prob}(X_j | Y_i)$.
- That is, the summary that *the patient does not have cancer* is less informative than *the patient has 20.8% chance of having cancer*

Classifiers

We will specify the estimator via a matrix $K \in \mathbb{R}^{m \times n}$, where

$$K_{ij} = \begin{cases} 1 & \text{if } j = f_{\text{est}}(i) \\ 0 & \text{otherwise} \end{cases}$$

- there is exactly one 1 in every row of ${\cal K}$
- $K\mathbf{1} = \mathbf{1}$, i.e., K is row stochastic

The MAP Classifier

The maximum a-posteriori probability (MAP) classifier is

$$f_{\max}(i_{\max}) = \arg \max_{j} \ \mathbf{Prob}(X_j \mid Y_{i_{\max}})$$

If we measure that event $Y_{i_{meas}}$ occurred, then we estimate which event X_1, \ldots, X_n occurred by picking the one which has the highest conditional probability

• We pick *j* to maximize the *conditional probability*

$$\operatorname{Prob}(X_j \mid Y_i) = \frac{\operatorname{Prob}(Y_i \mid X_j) \operatorname{Prob}(X_j)}{\operatorname{Prob}(Y_i)}$$

• This is the same as picking *j* to maximize the *joint probability*

 $\mathbf{Prob}(Y_i \mid X_j) \mathbf{Prob}(X_j)$

Here n = 2 and m = 8.

We have transition, prior, joint and conditional probabilities

The MAP Classifier

In terms of B and J, the MAP estimator is

pick j corresponding to the largest element in row $i_{\rm meas}$ of B

Equivalently, we can use J instead of B; the columns of J are plotted below.

in words: *scale* the transition pdf $\operatorname{Prob}(Y_i | X_j)$ by the prior pdf $\operatorname{Prob}(X_j)$, and pick the largest evaluated at $Y_{i_{\text{meas}}}$.

Decision Regions

The classifier splits the set of observations into *decision regions*

The decision regions are

 $R_1 = \{ Y_i \mid i \le 3 \}$ $R_2 = \{ Y_i \mid i > 3 \}$

- if $Y_{i_{\text{meas}}} \in R_i$, then we estimate that X_i occurred.
- We will see that this idea is useful when estimating in continuous probability spaces

Reducible Error

- The area (probability mass) under both curves sums to 1.
- If we choose the decision boundary shown at i = 43, then the error probability is the area of the three shaded regions
- By moving the decision boundary to 40, we can remove the *reducible error*

Suppose there are four coins in a bag, some gold and some silver. Let

 $X_j = \mathbf{Prob}(j-1 \text{ of the coins in the bag are gold})$ $i = 1, \dots, 5$

We have the prior pdf $x_j = \mathbf{Prob}(X_j)$

$$x = \begin{bmatrix} 0.05 & 0.15 & 0.15 & 0.6 & 0.05 \end{bmatrix}^T$$

We draw two coins at random from the bag. Let

 $Y_i = \mathbf{Prob}(i-1 \text{ of the coins drawn are gold})$

The transition matrix is

$$A = \begin{bmatrix} 1 & 1/2 & 1/6 & 0 & 0 \\ 0 & 1/2 & 2/3 & 1/2 & 0 \\ 0 & 0 & 1/6 & 1/2 & 1 \end{bmatrix}$$

As usual, $A_{ij} = \operatorname{\mathbf{Prob}}(Y_i \mid X_j)$

Because, if there are \boldsymbol{q} gold coins in the bag, then

- the probability of drawing 0 gold coins is (4-q)(3-q)/12
- the probability of drawing 1 gold coin is q(4-q)/6
- the probability of drawing 2 gold coins is q(q-1)/12

The joint probability matrix is

The map estimator is

 $J = \begin{bmatrix} 0.05 & 0.075 \\ 0 & 0.075 \\ 0 & 0 \end{bmatrix}$

$$K = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

0.025

0.025

0.1

()

0.3

0.3

()

 $\left(\right)$

0.05

So, using the MAP estimator, we conclude

- if we draw no gold coins, we estimate there was 1 gold coin in the bag
- if we draw 1 or 2 or gold coins, we estimate there were 3 gold coins in the bag

The a-posteriori probabilities are shown on the right for each of the three possible measurements

Error Analysis

The unconditional error matrix $E \in \mathbb{R}^{n \times n}$ is

$$E_{jk} = \text{probability that } X_j \text{ is estimated and } X_k \text{ occurs}$$

= $\operatorname{Prob}(j_{est} = j \text{ and } X_k)$
= $\sum_{i=1}^m \operatorname{Prob}(j_{est} = j \text{ and } Y_i \text{ and } X_k)$ since the Y_i partition Ω
= $\sum_{i=1}^m \operatorname{Prob}(\bigcup \{ Y_p | f_{est}(p) = j \} \cap Y_i \text{ and } X_k)$

Now notice that

$$\bigcup \left\{ \begin{array}{ll} Y_p \mid f_{\mathsf{est}}(p) = j \end{array} \right\} \cap Y_i = \begin{cases} Y_i & \text{if } f_{\mathsf{est}}(i) = j \\ \emptyset & \text{otherwise} \end{cases} \\ = \begin{cases} Y_i & \text{if } K_{ij} = 1 \\ \emptyset & \text{otherwise} \end{cases}$$

Error Analysis

Therefore we have

$$E_{jk} = \text{probability that } X_j \text{ is estimated and } X_k \text{ occurs}$$
$$= \sum_{i=1}^m K_{ij} \operatorname{Prob}(Y_i \cap X_k)$$
$$= \sum_{i=1}^m K_{ij} J_{ik}$$

That is, $E = K^T J$.

Notice that $\mathbf{1}^T E \mathbf{1} = 1$.

Example: Error Analysis

For the coins example, we have

$$E = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0.05 & 0.075 & 0.025 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0.075 & 0.125 & 0.6 & 0.05 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Some rows are zero, since, e.g., we never estimate that are no coins in the bag.
- Ideally, we would have E zero on the off-diagonal elements.
- Notice that each column j sums to the prior probability $\operatorname{\mathbf{Prob}}(X_j)$

6 - 27 Classification

Error Analysis

The probability that the estimate is correct is

$$\sum_{j=1}^{n} E_{jj} = \operatorname{trace} E$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{m} K_{ij} J_{ij}$$

Hence to maximize the probability of a correct estimate, we pick K so that

$$K_{ij} = \begin{cases} 1 & \text{if } J_{ij} \text{ is the largest element of row } i \text{ of } J \\ 0 & \text{otherwise} \end{cases}$$

This is exactly the MAP classifier; i.e.,

The MAP classifier maximizes the probability of a correct estimate

Cost Functions

Suppose we now assign *costs* to errors

 $C_{jk} = \text{cost}$ when X_j is estimated and X_k occurs

The *expected cost* is

$$\mathbf{E} C = \sum_{j=1}^{n} \sum_{k=1}^{n} C_{jk} \operatorname{Prob}(j_{est} = j \text{ and } X_k)$$
$$= \sum_{j=1}^{n} \sum_{k=1}^{n} C_{jk} E_{jk}$$
$$= \operatorname{trace}(EC^T)$$
$$= \operatorname{trace}(K^T J C^T)$$

This is called the *Bayes risk*

Cost Functions

Suppose we assign cost

 $C_{jk} = \begin{cases} 1 & \text{if } j \neq q \\ 0 & \text{otherwise} \end{cases}$ i.e., the estimate is wrong

That is

$$C = \begin{bmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \ddots & \ddots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & 0 & 1 \\ 1 & \dots & 1 & 0 \end{bmatrix} = \mathbf{1}\mathbf{1}^T - I$$

Then the Bayes risk is

$$\mathbf{E} C = \mathbf{trace} \left(E(\mathbf{1}\mathbf{1}^T - I) \right) = 1 - \mathbf{trace} E$$

- Hence minimizing this cost function maximizes the probability of a correct estimate.
- So the MAP classifier minimizes *this* cost function.

Choosing a Cost Function

Suppose we consider the radar example, where

 X_1 = the event that there are no aircraft present X_2 = the event that there is an aircraft present

Then we may significantly prefer false positives to false negatives.

In that case we could choose, for example

$$C = \begin{bmatrix} 0 & 100 \\ 1 & 0 \end{bmatrix}$$

- C₂₁ is the cost for estimating X₂ when X₁ occurs i.e., the cost for *false positives*
- C_{12} is the cost for estimating X_1 when X_2 occurs i.e., the cost for *false negatives*

Example: Choosing a Cost Function

We would like to minimize $\mathbf{E}\,C=\mathbf{trace}(K^TJC^T)$, so we pick the smallest element in each row of JC^T

Trade-offs

Often we would like to examine the trade off between

- J_1 = the probability of making a false positive error.
- $J_2 =$ the probability of making a false negative error.

- usually the objectives are *competing*
- we can make one smaller at the expense of making the other larger

Trade-off Curve

- shaded area shows (J_2, J_1) achieved by some $x \in \mathbb{R}^n$
- clear area shows (J_2, J_1) not achieved by any $x \in \mathbb{R}^n$
- boundary of region is called *optimal* trade-off curve
- corresponding *x* called *Pareto optimal*

three example choices of $x{:}\ x^{(1)}{\text{,}}\ x^{(2)}{\text{,}}\ x^{(3)}$

- $x^{(3)}$ is worse than $x^{(2)}$ on both counts (J_2 and J_1)
- $x^{(1)}$ is better than $x^{(2)}$ in J_2 , but worse in J_1

6 - 34 Classification

Weighted-Sum Objective

to find Pareto optimal points, i.e. x's on optimal trade-off curve, we minimize the *weighted-sum* objective:

$$J_1 + \mu J_2$$

parameter $\mu \geq 0$ gives relative weight between J_1 and J_2

points where weighted sum is constant, $J_1 + \mu J_2 = \alpha$ correspond to line with slope $-\mu$

- $x^{(2)}$ minimizes the weighted-sum objective for μ shown
- by varying μ from 0 to $+\infty$, we can sweep out the entire *optimal trade-off curve*
- In some cases, the trade-off curve may not be *convex*; then there are Pareto points that are not found by minimizing a weighted sum.

Weighted-Sum Objective

We have

$$J_1 = \operatorname{\mathbf{Prob}}(j_{\mathsf{est}} = 2 \cap X_1)$$
$$J_2 = \operatorname{\mathbf{Prob}}(j_{\mathsf{est}} = 1 \cap X_2)$$

and we would like to minimize $J_1 + \mu J_2$

This is the same as picking cost matrix

$$C = \begin{bmatrix} 0 & \mu \\ 1 & 0 \end{bmatrix}$$

This is called the *Neyman-Pearson* cost function.

Example: Weighted-Sum Objective

Consider the joint probabilities

with prior probabilities

$$Prob(X_1) = 0.6$$
 $Prob(X_2) = 0.4$

Example: Weighted-Sum Objective

The trade-off curve is below

- This curve is called the *operating characteristic*
- Note intersections with axes at prior probabilities
- The pareto-optimal points are a *finite set*, not a continuous curve, since there are only a few choices for threshold value.

Operating characteristic

- Also called the *receiver operating characteristic* or ROC.
- Often plotted other way up

Example: Trading off Errors

6 - 40 Classification

Example: Trading off Errors

The operating characteristic becomes gentler when it is hard to *distinguish* X_1 from X_2

Conditional Errors

The conditional error matrix $E^{\text{cond}} \in \mathbb{R}^{n \times n}$ is

$$\begin{split} E_{jk}^{\text{cond}} &= \text{probability that } X_j \text{ is estimated given that } X_k \text{ occurred} \\ &= \mathbf{Prob}(j_{\text{est}} = j \mid X_k) \\ &= \sum_{i=1}^m \mathbf{Prob}\Big(j_{\text{est}} = j \text{ and } Y_i \mid X_k\Big) \text{ since the } Y_i \text{ partition } \Omega \\ &= \sum_{i=1}^m \mathbf{Prob}\Big(\bigcup \big\{ Y_p \mid \phi(p) = j \big\} \cap Y_i \mid X_k \Big) \end{split}$$

Now notice that

$$\bigcup \left\{ \begin{array}{ll} Y_p \,|\, \phi(p) = j \end{array} \right\} \cap Y_i = \begin{cases} Y_i & \text{if } \phi(i) = j \\ \emptyset & \text{otherwise} \end{cases} \\ = \begin{cases} Y_i & \text{if } K_{ij} = 1 \\ \emptyset & \text{otherwise} \end{cases}$$

Conditional Errors

Therefore we have

$$E_{jk}^{\mathsf{cond}} = \sum_{i=1}^{m} K_{ij} \operatorname{\mathbf{Prob}}(Y_i \mid X_k)$$
$$= \sum_{i=1}^{m} K_{ij} A_{ik}$$

That is

$$E^{\mathsf{cond}} = K^T A$$

Conditional Errors

For the coins example, we have

$$E^{\mathsf{cond}} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0.5 & 1/6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 5/6 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 E_{ik}^{cond} is the probability that X_j is estimated given that X_k occurred

- $\mathbf{1}^T E^{\text{cond}} = \mathbf{1}^T$, i.e., the column sums are one Because, when X_k occurs, some X_j is always estimated
- Ideally we would like $E^{\text{cond}} = I$

Maximum-Likelihood

When we do not have any prior probabilities, a commonly used heuristic is the method of *maximum likelihood*.

• MAP estimate: pick *j* to maximize the *joint probability*

 $\mathbf{Prob}(Y_i \,|\, X_j) \, \mathbf{Prob}(X_j)$

• *Max Likelihood:* pick *j* to maximize the *a-priori probability*

 $\mathbf{Prob}(Y_i \mid X_j)$

- We can also minimize costs associated with errors. In this case we minimize $\mathbf{trace}(E^{\text{cond}}C^T)$ instead of $\mathbf{trace}(EC^T)$.
- Similarly, we can construct a trade-off curve using these costs.
- The estimates are identical to those obtained when *all prior probabilities are equal*.