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6 - Classification

• Examples: radar system, binary transmission, OCR , spam filtering

• The classification problem

• Transition matrices and Bayes rule

• The importance of prior probabilities

• The MAP classifier and example

• Decision regions

• Example: gold coins

• Error analysis and the MAP classifier

• Cost functions and example

• Trade-offs and the Neyman-Pearson cost function

• Example: weighted-sum objective

• The operating characteristic

• Conditional errors and maximum likelihood
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Example: Radar System

A radar system sends out n pulses, and receives y reflections, where 0 ≤ y ≤ n.

Ideally, y = n if an aircraft is present, and y = 0 otherwise.

In practice, reflections may be lost, or noise may be mistaken for reflections.

So we have two probability mass functions

p1(y) = the probability of receiving y reflections when there are no aircraft present

p2(y) = the probability of receiving y reflections when there is an aircraft present
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If we measure ymeas reflections, how do we decide if an aircraft is present?
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Example: Radar System
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If there are fewer than 6 reflections, an aircraft is not present. If there are more than 11
reflections, an aircraft is present.

We would like to choose a threshold value, based on

• probabilities of errors; false-positives and false-negatives

• Costs assigned to these events
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Other Examples

• Binary transmission channel: A binary bit is sent to us across a communication
channel.

• If a 1 is sent, then with probability 0.8 a 1 is received, and probability 0.2 a 0 is
received

• If a 0 is sent, then with probability 0.1 a 1 is received, and probability 0.9 a 0 is
received

We measure the received bit, and would like to determine which bit was sent.

• Optical character recognition: We measure various features of a character in an
optical system, such as

• the width of the character

• the ratio of black pixels to white pixels

Which of the characters A, B, . . . , Z is it?

• Spam filtering: we measure which words are contained in the email. We would like
to determine if the email is spam or not.
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The Classification Problem

• X1, . . . , Xn are events that partition Ω, called hypotheses

• Y1, . . . , Ym are events that partition Ω, called observations

X1 X2

Y1

Y2

Y3

The outcome of the experiment is ω ∈ Ω

• ω lies in exactly one of the events Xj and exactly one of the events Yi

• In other words, exactly one ‘hypothesis is true’ and exactly one observation occurs

The decision or classification problem is as follows:

• We measure which of the Yi the outcome lies in, say Yimeas

• We would like to pick jest to estimate which Xj contains ω
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Transition Matrices

We have a transition matrix A ∈ R
m×n

Aij = Prob(Yi |Xj)

The matrix A is also called the likelihood matrix.

We can represent it as a bipartite graph, e.g.,

A =





0.7 0.2
0.3 0.3
0 0.5





• A is elementwise nonnegative and the sum of each column is one, i.e.,

A º 0 and 1
TA = 1

T

A matrix with these properties is called column stochastic.
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Conditional Probability

We would like to know

Bimeas,j = Prob(Xj | Yimeas)

• Prob(Xj | Yimeas) is called the a-
posteriori probability

• We will have a different pmf for each
value of imeas

• Once we have computed the a-posteriori
pmf, we can pick an estimate, i.e., a
value for jest

• The estimate is usually chosen to mini-
mize a cost function
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Bayes Rule

For any events A, B ⊂ Ω with Prob(B) 6= 0, Bayes rule is

Prob(A |B) =
Prob(B |A)Prob(A)

Prob(B)

Because if Prob(B) 6= 0, then

Prob(A |B) =
Prob(A ∩ B)

Prob(B)

and so
Prob(A |B)Prob(B) = Prob(B |A)Prob(A)
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Bayes Rule

The Law of Total Probability says that since X1, . . . , Xm partition Ω, we have for any
event A

Prob(A) =

m
∑

j=1

Prob(A ∩ Xj)

Now by Bayes rule, we have

Prob(Xj |Yi) =
Prob(Yi |Xj)Prob(Xj)

Prob(Yi)

=
Prob(Yi |Xj)Prob(Xj)

∑m
k=1 Prob(Yi ∩ Xk)

and therefore the a-posteriori probability is

Prob(Xj |Yi) =
Prob(Yi |Xj)Prob(Xj)

∑m
k=1 Prob(Yi |Xk)Prob(Xk)
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Problem Data

We start with

• the prior distribution xj = Prob(Xj) for j = 1, . . . , n

• the transition probabilities Aij = Prob(Yi |Xj) for i = 1, . . . , m and j = 1, . . . , n

From these we can find

• the a-posteriori probabilities Bij = Prob(Xj |Yi)

• the marginal pmf yi = Prob(Yi)

• and the joint distribution Jij = Prob(Yi ∩ Xj)

We have

y = Ax Bij =
Jij

yi
Jij = Aijxj
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Example: Prior Probabilities

Why do we need prior probabilities? The following is the standard example.

Suppose we have a test for cancer, which has the following accuracy

• if the patient does not have cancer, then the probability of a negative result is 0.97,
and of positive result is 0.03.

• if the patient has cancer, then the probability of a negative result is 0.02, and of a
positive result is 0.98.

These are the transition probabilities

Suppose a patient takes this test. The probability of not having cancer is 0.992, and hence
the probability of having cancer is 0.008.

These are the prior probabilities.



6 - 12 Classification S. Lall, Stanford 2011.01.13.01

Example: Prior Probabilities

Imagine 10, 000 patients take this test.

• On average, 80 of these people will have cancer (0.008 probability) and since 98% of
them will test positive, we will have 78 positive tests

• Of the 9,920 cancerless patients, 3% of them will test positive, giving a further 297
positive tests

• Hence of the total 375 positive tests, most (297) are false positives.

• The conditional probability of having cancer given that one tests positive
is 78/375 = 0.208
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Example: Prior Probabilities

The transition matrix is

A =

[

0.97 0.02
0.03 0.98

]

The joint probabilities are

J =
no cancer cancer

test is negative 0.96224 0.00016
test is positive 0.02976 0.00784

But the conditional probabilities are

B =
no cancer cancer

test is negative 0.999834 0.000166251
test is positive 0.791489 0.208511

So given that the patient tests positive, the chances of having cancer are only 20%

Without a prior, one cannot draw any conclusion.
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Classifiers

We would like to find a classifier, that is a map fest : {1, . . . , m} → {1, . . . , n} which

if we observe event Yi, then we estimate that event Xj occurred, where j = fest(i)

• Notice that classification is deliberately throwing away information, since we have the
conditional probabilities Prob(Xj |Yi).

• That is, the summary that the patient does not have cancer is less informative than
the patient has 20.8% chance of having cancer
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Classifiers

We will specify the estimator via a matrix K ∈ R
m×n, where

Kij =

{

1 if j = fest(i)

0 otherwise

• there is exactly one 1 in every row of K

• K1 = 1, i.e., K is row stochastic
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The MAP Classifier

The maximum a-posteriori probability (MAP) classifier is

fmap(imeas) = arg max
j

Prob(Xj |Yimeas)

If we measure that event Yimeas occurred, then we estimate which event X1, . . . , Xn oc-
curred by picking the one which has the highest conditional probability

• We pick j to maximize the conditional probability

Prob(Xj |Yi) =
Prob(Yi |Xj)Prob(Xj)

Prob(Yi)

• This is the same as picking j to maximize the joint probability

Prob(Yi |Xj)Prob(Xj)
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Example

Here n = 2 and m = 8.
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We have transition, prior, joint and conditional probabilities

A =
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0.2 0
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x =

[

0.2
0.8

]

J =
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The MAP Classifier

In terms of B and J , the MAP estimator is

pick j corresponding to the largest element in row imeas of B

Equivalently, we can use J instead of B; the columns of J are plotted below.

0 1 2 3 4 5 6 7 8 9
0

0.1
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0.3
prob(y ∩ x1)
prob(y ∩ x2)

in words: scale the transition pdf Prob(Yi |Xj) by the prior pdf Prob(Xj), and pick the
largest evaluated at Yimeas.
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Decision Regions

The classifier splits the set of observations into decision regions

0 1 2 3 4 5 6 7 8 9
0
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prob(y ∩ x1)
prob(y ∩ x2)

The decision regions are

R1 = {Yi | i ≤ 3 }

R2 = {Yi | i > 3 }

• if Yimeas ∈ Ri, then we estimate that Xi occurred.

• We will see that this idea is useful when estimating in continuous probability spaces
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Reducible Error

Reducible error

\

\

• The area (probability mass) under both curves sums to 1.

• If we choose the decision boundary shown at i = 43, then the error probability is the
area of the three shaded regions

• By moving the decision boundary to 40, we can remove the reducible error
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Example

Suppose there are four coins in a bag, some gold and some silver. Let

Xj = Prob(j − 1 of the coins in the bag are gold) i = 1, . . . , 5

We have the prior pdf xj = Prob(Xj)

x =
[

0.05 0.15 0.15 0.6 0.05
]T

We draw two coins at random from the bag. Let

Yi = Prob(i − 1 of the coins drawn are gold)
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Example

The transition matrix is

A =





1 1/2 1/6 0 0
0 1/2 2/3 1/2 0
0 0 1/6 1/2 1





As usual, Aij = Prob(Yi |Xj)

Because, if there are q gold coins in the bag, then

• the probability of drawing 0 gold coins is (4 − q)(3 − q)/12

• the probability of drawing 1 gold coin is q(4 − q)/6

• the probability of drawing 2 gold coins is q(q − 1)/12
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Example

The joint probability matrix is

J =





0.05 0.075 0.025 0 0
0 0.075 0.1 0.3 0
0 0 0.025 0.3 0.05





The map estimator is

K =





0 1 0 0 0
0 0 0 1 0
0 0 0 1 0





So, using the MAP estimator, we conclude

• if we draw no gold coins, we estimate there
was 1 gold coin in the bag

• if we draw 1 or 2 or gold coins, we estimate
there were 3 gold coins in the bag

The a-posteriori probabilities are shown on the
right for each of the three possible measurements
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Error Analysis

The unconditional error matrix E ∈ R
n×n is

Ejk = probability that Xj is estimated and Xk occurs

= Prob(jest = j and Xk)

=

m
∑

i=1

Prob

(

jest = j and Yi and Xk

)

since the Yi partition Ω

=

m
∑

i=1

Prob

(

⋃

{

Yp | fest(p) = j
}

∩ Yi and Xk

)

Now notice that

⋃

{

Yp | fest(p) = j
}

∩ Yi =

{

Yi if fest(i) = j

∅ otherwise

=

{

Yi if Kij = 1

∅ otherwise
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Error Analysis

Therefore we have

Ejk = probability that Xj is estimated and Xk occurs

=

m
∑

i=1

Kij Prob(Yi ∩ Xk)

=

m
∑

i=1

KijJik

That is, E = KTJ .

Notice that 1
TE1 = 1.
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Example: Error Analysis

For the coins example, we have

E =













0 0 0 0 0
0.05 0.075 0.025 0 0
0 0 0 0 0
0 0.075 0.125 0.6 0.05
0 0 0 0 0













• Some rows are zero, since, e.g., we never estimate that are no coins in the bag.

• Ideally, we would have E zero on the off-diagonal elements.

• Notice that each column j sums to the prior probability Prob(Xj)
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Error Analysis

The probability that the estimate is correct is

n
∑

j=1

Ejj = traceE

=

n
∑

j=1

m
∑

i=1

KijJij

Hence to maximize the probability of a correct estimate, we pick K so that

Kij =

{

1 if Jij is the largest element of row i of J

0 otherwise

This is exactly the MAP classifier; i.e.,

The MAP classifier maximizes the probability of a correct estimate
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Cost Functions

Suppose we now assign costs to errors

Cjk = cost when Xj is estimated and Xk occurs

The expected cost is

EC =

n
∑

j=1

n
∑

k=1

Cjk Prob(jest = j and Xk)

=

n
∑

j=1

n
∑

k=1

CjkEjk

= trace(ECT )

= trace(KTJCT )

This is called the Bayes risk
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Cost Functions

Suppose we assign cost

Cjk =

{

1 if j 6= q i.e., the estimate is wrong

0 otherwise

That is

C =













0 1 . . . 1

1 0 ... .
.
..

.

.
... ...

0 1
1 . . . 1 0













= 11
T − I

Then the Bayes risk is

EC = trace
(

E(11
T − I)

)

= 1 − traceE

• Hence minimizing this cost function maximizes the probability of a correct estimate.

• So the MAP classifier minimizes this cost function.
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Choosing a Cost Function

Suppose we consider the radar example, where

X1 = the event that there are no aircraft present

X2 = the event that there is an aircraft present

Then we may significantly prefer false positives to false negatives.

In that case we could choose, for example

C =

[

0 100
1 0

]

• C21 is the cost for estimating X2 when X1 occurs

i.e., the cost for false positives

• C12 is the cost for estimating X1 when X2 occurs

i.e., the cost for false negatives
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Example: Choosing a Cost Function
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We would like to minimize EC = trace(KTJCT ), so we pick the smallest element in
each row of JCT

A =
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0 0.2
0 0.1

























C =

[

0 100
1 0

]

x =

[

0.5
0.5

]

JCT =

























0 0.05
0 0.1
0 0.2
5 0.1
10 0.05
20 0
10 0
5 0
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Trade-offs

Often we would like to examine the trade off between

• J1 = the probability of making a false positive error.

• J2 = the probability of making a false negative error.

• usually the objectives are competing

• we can make one smaller at the expense of making the other larger



x(1)

x(2)

x(3)
J1

J2
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Trade-off Curve

• shaded area shows (J2, J1) achieved by
some x ∈ R

n

• clear area shows (J2, J1) not achieved by
any x ∈ R

n

• boundary of region is called optimal
trade-off curve

• corresponding x called Pareto optimal

three example choices of x: x(1), x(2), x(3)

• x(3) is worse than x(2) on both counts (J2 and J1)

• x(1) is better than x(2) in J2, but worse in J1



J2

J1

x(1)

x(2)

x(3)

J1 + öJ2 = ë
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Weighted-Sum Objective

to find Pareto optimal points, i.e. x’s on
optimal trade-off curve, we minimize the
weighted-sum objective:

J1 + µJ2

parameter µ ≥ 0 gives relative weight be-
tween J1 and J2

points where weighted sum is constant, J1 + µJ2 = α correspond to line with slope −µ

• x(2) minimizes the weighted-sum objective for µ shown

• by varying µ from 0 to +∞, we can sweep out the entire optimal trade-off curve

• In some cases, the trade-off curve may not be convex; then there are Pareto points
that are not found by minimizing a weighted sum.
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Weighted-Sum Objective

We have

J1 = Prob(jest = 2 ∩ X1)

J2 = Prob(jest = 1 ∩ X2)

and we would like to minimize J1 + µJ2

This is the same as picking cost matrix

C =

[

0 µ
1 0

]

This is called the Neyman-Pearson cost function.
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Example: Weighted-Sum Objective

Consider the joint probabilities
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with prior probabilities

Prob(X1) = 0.6 Prob(X2) = 0.4
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Example: Weighted-Sum Objective

The trade-off curve is below
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• This curve is called the operating characteristic

• Note intersections with axes at prior probabilities

• The pareto-optimal points are a finite set, not a continuous curve, since there are
only a few choices for threshold value.
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Operating characteristic

• Also called the receiver operating characteristic or ROC.

• Often plotted other way up
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Example: Trading off Errors

With µ = 1
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With µ = 10
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Example: Trading off Errors

The operating characteristic becomes gentler when it is hard to distinguish X1 from X2
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Conditional Errors

The conditional error matrix Econd ∈ R
n×n is

Econd
jk = probability that Xj is estimated given that Xk occurred

= Prob(jest = j |Xk)

=

m
∑

i=1

Prob

(

jest = j and Yi |Xk

)

since the Yi partition Ω

=

m
∑

i=1

Prob

(

⋃

{

Yp |φ(p) = j
}

∩ Yi |Xk

)

Now notice that

⋃

{

Yp |φ(p) = j
}

∩ Yi =

{

Yi if φ(i) = j

∅ otherwise

=

{

Yi if Kij = 1

∅ otherwise
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Conditional Errors

Therefore we have

Econd
jk =

m
∑

i=1

Kij Prob(Yi |Xk)

=

m
∑

i=1

KijAik

That is

Econd = KTA
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Conditional Errors

For the coins example, we have

Econd =













0 0 0 0 0
1 0.5 1/6 0 0
0 0 0 0 0
0 0.5 5/6 1 1
0 0 0 0 0













Econd
jk is the probability that Xj is estimated given that Xk occurred

• 1
TEcond = 1

T , i.e., the column sums are one

Because, when Xk occurs, some Xj is always estimated

• Ideally we would like Econd = I
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Maximum-Likelihood

When we do not have any prior probabilities, a commonly used heuristic is the method of
maximum likelihood.

• MAP estimate: pick j to maximize the joint probability

Prob(Yi |Xj)Prob(Xj)

• Max Likelihood: pick j to maximize the a-priori probability

Prob(Yi |Xj)

• We can also minimize costs associated with errors. In this case we
minimize trace(EcondCT ) instead of trace(ECT ).

• Similarly, we can construct a trade-off curve using these costs.

• The estimates are identical to those obtained when all prior probabilities are equal.


