6 - Classification

- Examples: radar system, binary transmission, OCR , spam filtering
- The classification problem
- Transition matrices and Bayes rule
- The importance of prior probabilities
- The MAP classifier and example
- Decision regions
- Example: gold coins
- Error analysis and the MAP classifier
- Cost functions and example
- Trade-offs and the Neyman-Pearson cost function
- Example: weighted-sum objective
- The operating characteristic
- Conditional errors and maximum likelihood

Example: Radar System

A radar system sends out n pulses, and receives y reflections, where $0 \leq y \leq n$. Ideally, $y=n$ if an aircraft is present, and $y=0$ otherwise.
In practice, reflections may be lost, or noise may be mistaken for reflections.
So we have two probability mass functions
$p_{1}(y)=$ the probability of receiving y reflections when there are no aircraft present $p_{2}(y)=$ the probability of receiving y reflections when there is an aircraft present

If we measure $y_{\text {meas }}$ reflections, how do we decide if an aircraft is present?

Example: Radar System

If there are fewer than 6 reflections, an aircraft is not present. If there are more than 11 reflections, an aircraft is present.

We would like to choose a threshold value, based on

- probabilities of errors; false-positives and false-negatives
- Costs assigned to these events

Other Examples

- Binary transmission channel: A binary bit is sent to us across a communication channel.
- If a 1 is sent, then with probability 0.8 a 1 is received, and probability 0.2 a 0 is received
- If a 0 is sent, then with probability 0.1 a 1 is received, and probability 0.9 a 0 is received

We measure the received bit, and would like to determine which bit was sent.

- Optical character recognition: We measure various features of a character in an optical system, such as
- the width of the character
- the ratio of black pixels to white pixels

Which of the characters A, B, \ldots, Z is it?

- Spam filtering: we measure which words are contained in the email. We would like to determine if the email is spam or not.

The Classification Problem

- X_{1}, \ldots, X_{n} are events that partition Ω, called hypotheses
- Y_{1}, \ldots, Y_{m} are events that partition Ω, called observations

The outcome of the experiment is $\omega \in \Omega$

- ω lies in exactly one of the events X_{j} and exactly one of the events Y_{i}
- In other words, exactly one 'hypothesis is true' and exactly one observation occurs

The decision or classification problem is as follows:

- We measure which of the Y_{i} the outcome lies in, say $Y_{i_{\text {meas }}}$
- We would like to pick $j_{\text {est }}$ to estimate which X_{j} contains ω

Transition Matrices

We have a transition matrix $A \in \mathbb{R}^{m \times n}$

$$
A_{i j}=\operatorname{Prob}\left(Y_{i} \mid X_{j}\right)
$$

The matrix A is also called the likelihood matrix.

We can represent it as a bipartite graph, e.g.,

$$
A=\left[\begin{array}{cc}
0.7 & 0.2 \\
0.3 & 0.3 \\
0 & 0.5
\end{array}\right]
$$

- A is elementwise nonnegative and the sum of each column is one, i.e.,

$$
A \succeq 0 \quad \text { and } \quad \mathbf{1}^{T} A=\mathbf{1}^{T}
$$

A matrix with these properties is called column stochastic.

Conditional Probability

We would like to know

$$
B_{i_{\text {meas }, j}}=\operatorname{Prob}\left(X_{j} \mid Y_{i_{\text {meas }}}\right)
$$

- $\operatorname{Prob}\left(X_{j} \mid Y_{i_{\text {meas }}}\right)$ is called the aposteriori probability
- We will have a different pmf for each value of $i_{\text {meas }}$
- Once we have computed the a-posteriori pmf, we can pick an estimate, i.e., a value for $j_{\text {est }}$
- The estimate is usually chosen to minimize a cost function

Bayes Rule

For any events $A, B \subset \Omega$ with $\operatorname{Prob}(B) \neq 0$, Bayes rule is

$$
\operatorname{Prob}(A \mid B)=\frac{\operatorname{Prob}(B \mid A) \operatorname{Prob}(A)}{\operatorname{Prob}(B)}
$$

Because if $\operatorname{Prob}(B) \neq 0$, then

$$
\operatorname{Prob}(A \mid B)=\frac{\operatorname{Prob}(A \cap B)}{\operatorname{Prob}(B)}
$$

and so

$$
\operatorname{Prob}(A \mid B) \operatorname{Prob}(B)=\operatorname{Prob}(B \mid A) \operatorname{Prob}(A)
$$

Bayes Rule

The Law of Total Probability says that since X_{1}, \ldots, X_{m} partition Ω, we have for any event A

$$
\operatorname{Prob}(A)=\sum_{j=1}^{m} \operatorname{Prob}\left(A \cap X_{j}\right)
$$

Now by Bayes rule, we have

$$
\begin{aligned}
\operatorname{Prob}\left(X_{j} \mid Y_{i}\right) & =\frac{\operatorname{Prob}\left(Y_{i} \mid X_{j}\right) \operatorname{Prob}\left(X_{j}\right)}{\operatorname{Prob}\left(Y_{i}\right)} \\
& =\frac{\operatorname{Prob}\left(Y_{i} \mid X_{j}\right) \operatorname{Prob}\left(X_{j}\right)}{\sum_{k=1}^{m} \operatorname{Prob}\left(Y_{i} \cap X_{k}\right)}
\end{aligned}
$$

and therefore the a-posteriori probability is

$$
\operatorname{Prob}\left(X_{j} \mid Y_{i}\right)=\frac{\operatorname{Prob}\left(Y_{i} \mid X_{j}\right) \operatorname{Prob}\left(X_{j}\right)}{\sum_{k=1}^{m} \operatorname{Prob}\left(Y_{i} \mid X_{k}\right) \operatorname{Prob}\left(X_{k}\right)}
$$

Problem Data

We start with

- the prior distribution $x_{j}=\operatorname{Prob}\left(X_{j}\right)$ for $j=1, \ldots, n$
- the transition probabilities $A_{i j}=\operatorname{Prob}\left(Y_{i} \mid X_{j}\right)$ for $i=1, \ldots, m$ and $j=1, \ldots, n$

From these we can find

- the a-posteriori probabilities $B_{i j}=\operatorname{Prob}\left(X_{j} \mid Y_{i}\right)$
- the marginal pmf $y_{i}=\operatorname{Prob}\left(Y_{i}\right)$
- and the joint distribution $J_{i j}=\operatorname{Prob}\left(Y_{i} \cap X_{j}\right)$

We have

$$
y=A x \quad B_{i j}=\frac{J_{i j}}{y_{i}} \quad J_{i j}=A_{i j} x_{j}
$$

Example: Prior Probabilities

Why do we need prior probabilities? The following is the standard example.

Suppose we have a test for cancer, which has the following accuracy

- if the patient does not have cancer, then the probability of a negative result is 0.97 , and of positive result is 0.03 .
- if the patient has cancer, then the probability of a negative result is 0.02 , and of a positive result is 0.98 .

These are the transition probabilities

Suppose a patient takes this test. The probability of not having cancer is 0.992 , and hence the probability of having cancer is 0.008 .

These are the prior probabilities.

Example: Prior Probabilities

Imagine 10, 000 patients take this test.

- On average, 80 of these people will have cancer (0.008 probability) and since 98% of them will test positive, we will have 78 positive tests
- Of the 9,920 cancerless patients, 3% of them will test positive, giving a further 297 positive tests
- Hence of the total 375 positive tests, most (297) are false positives.
- The conditional probability of having cancer given that one tests positive is $78 / 375=0.208$

Example: Prior Probabilities

The transition matrix is

$$
A=\left[\begin{array}{ll}
0.97 & 0.02 \\
0.03 & 0.98
\end{array}\right]
$$

The joint probabilities are

$$
J=\begin{array}{c|cc}
& \text { no cancer } & \text { cancer } \\
\hline \text { test is negative } & 0.96224 & 0.00016 \\
\text { test is positive } & 0.02976 & 0.00784
\end{array}
$$

But the conditional probabilities are

$$
B=\begin{array}{c|cc}
& \text { no cancer } & \text { cancer } \\
\hline \text { test is negative } & 0.999834 & 0.000166251 \\
\text { test is positive } & 0.791489 & 0.208511
\end{array}
$$

So given that the patient tests positive, the chances of having cancer are only 20% Without a prior, one cannot draw any conclusion.

Classifiers

We would like to find a classifier, that is a map $f_{\text {est }}:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ which
if we observe event Y_{i}, then we estimate that event X_{j} occurred, where $j=f_{\text {est }}(i)$

- Notice that classification is deliberately throwing away information, since we have the conditional probabilities $\operatorname{Prob}\left(X_{j} \mid Y_{i}\right)$.
- That is, the summary that the patient does not have cancer is less informative than the patient has 20.8% chance of having cancer

Classifiers

We will specify the estimator via a matrix $K \in \mathbb{R}^{m \times n}$, where

$$
K_{i j}= \begin{cases}1 & \text { if } j=f_{\text {est }}(i) \\ 0 & \text { otherwise }\end{cases}
$$

- there is exactly one 1 in every row of K
- $K 1=1$, i.e., K is row stochastic

The MAP Classifier

The maximum a-posteriori probability (MAP) classifier is

$$
f_{\text {map }}\left(i_{\text {meas }}\right)=\arg \max _{j} \operatorname{Prob}\left(X_{j} \mid Y_{i_{\text {meas }}}\right)
$$

If we measure that event $Y_{i_{\text {meas }}}$ occurred, then we estimate which event X_{1}, \ldots, X_{n} occurred by picking the one which has the highest conditional probability

- We pick j to maximize the conditional probability

$$
\operatorname{Prob}\left(X_{j} \mid Y_{i}\right)=\frac{\operatorname{Prob}\left(Y_{i} \mid X_{j}\right) \operatorname{Prob}\left(X_{j}\right)}{\operatorname{Prob}\left(Y_{i}\right)}
$$

- This is the same as picking j to maximize the joint probability

$$
\operatorname{Prob}\left(Y_{i} \mid X_{j}\right) \operatorname{Prob}\left(X_{j}\right)
$$

Example

Here $n=2$ and $m=8$.

We have transition, prior, joint and conditional probabilities

$$
A=\left[\begin{array}{cc}
0.1 & 0 \\
0.2 & 0 \\
0.4 & 0 \\
0.2 & 0.1 \\
0.1 & 0.2 \\
0 & 0.4 \\
0 & 0.2 \\
0 & 0.1
\end{array}\right] \quad x=\left[\begin{array}{l}
0.2 \\
0.8
\end{array}\right] \quad J=\left[\begin{array}{cc}
0.02 & 0 \\
0.04 & 0 \\
0.08 & 0 \\
0.04 & 0.08 \\
0.02 & 0.16 \\
0 & 0.0 .32 \\
0 & 0.16 \\
0 & 0.08
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 / 3 & 2 / 3 \\
1 / 9 & 8 / 9 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

The MAP Classifier

In terms of B and J, the MAP estimator is

$$
\text { pick } j \text { corresponding to the largest element in row } i_{\text {meas }} \text { of } B
$$

Equivalently, we can use J instead of B; the columns of J are plotted below.

in words: scale the transition pdf $\operatorname{Prob}\left(Y_{i} \mid X_{j}\right)$ by the prior pdf $\operatorname{Prob}\left(X_{j}\right)$, and pick the largest evaluated at $Y_{i_{\text {meas }}}$.

Decision Regions

The classifier splits the set of observations into decision regions

The decision regions are

$$
\begin{aligned}
& R_{1}=\left\{Y_{i} \mid i \leq 3\right\} \\
& R_{2}=\left\{Y_{i} \mid i>3\right\}
\end{aligned}
$$

- if $Y_{i_{\text {meas }}} \in R_{i}$, then we estimate that X_{i} occurred.
- We will see that this idea is useful when estimating in continuous probability spaces

Reducible Error

- The area (probability mass) under both curves sums to 1 .
- If we choose the decision boundary shown at $i=43$, then the error probability is the area of the three shaded regions
- By moving the decision boundary to 40 , we can remove the reducible error

Example

Suppose there are four coins in a bag, some gold and some silver. Let

$$
X_{j}=\operatorname{Prob}(j-1 \text { of the coins in the bag are gold }) \quad i=1, \ldots, 5
$$

We have the prior pdf $x_{j}=\operatorname{Prob}\left(X_{j}\right)$

$$
x=\left[\begin{array}{lllll}
0.05 & 0.15 & 0.15 & 0.6 & 0.05
\end{array}\right]^{T}
$$

We draw two coins at random from the bag. Let

$$
Y_{i}=\operatorname{Prob}(i-1 \text { of the coins drawn are gold })
$$

Example

The transition matrix is

$$
A=\left[\begin{array}{ccccc}
1 & 1 / 2 & 1 / 6 & 0 & 0 \\
0 & 1 / 2 & 2 / 3 & 1 / 2 & 0 \\
0 & 0 & 1 / 6 & 1 / 2 & 1
\end{array}\right]
$$

As usual, $A_{i j}=\operatorname{Prob}\left(Y_{i} \mid X_{j}\right)$

Because, if there are q gold coins in the bag, then

- the probability of drawing 0 gold coins is $(4-q)(3-q) / 12$
- the probability of drawing 1 gold coin is $q(4-q) / 6$
- the probability of drawing 2 gold coins is $q(q-1) / 12$

Example

The joint probability matrix is

$$
J=\left[\begin{array}{ccccc}
0.05 & 0.075] & 0.025 & 0 & 0 \\
0 & 0.075 & 0.1 & {[0.3} & 0 \\
0 & 0 & 0.025 & {[0.3} & 0.05
\end{array}\right]
$$

The map estimator is

$$
K=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

So, using the MAP estimator, we conclude

- if we draw no gold coins, we estimate there was 1 gold coin in the bag
- if we draw 1 or 2 or gold coins, we estimate there were 3 gold coins in the bag

The a-posteriori probabilities are shown on the right for each of the three possible measurements

Error Analysis

The unconditional error matrix $E \in \mathbb{R}^{n \times n}$ is

$$
\begin{aligned}
E_{j k} & =\operatorname{probability} \text { that } X_{j} \text { is estimated and } X_{k} \text { occurs } \\
& =\operatorname{Prob}\left(j_{\text {est }}=j \text { and } X_{k}\right) \\
& =\sum_{i=1}^{m} \operatorname{Prob}\left(j_{\text {est }}=j \text { and } Y_{i} \text { and } X_{k}\right) \quad \text { since the } Y_{i} \text { partition } \Omega \\
& =\sum_{i=1}^{m} \operatorname{Prob}\left(\bigcup\left\{Y_{p} \mid f_{\text {est }}(p)=j\right\} \cap Y_{i} \text { and } X_{k}\right)
\end{aligned}
$$

Now notice that

$$
\begin{aligned}
\bigcup\left\{Y_{p} \mid f_{\text {est }}(p)=j\right\} \cap Y_{i} & = \begin{cases}Y_{i} & \text { if } f_{\text {est }}(i)=j \\
\emptyset & \text { otherwise }\end{cases} \\
& = \begin{cases}Y_{i} & \text { if } K_{i j}=1 \\
\emptyset & \text { otherwise }\end{cases}
\end{aligned}
$$

Error Analysis

Therefore we have

$$
E_{j k}=\text { probability that } X_{j} \text { is estimated and } X_{k} \text { occurs }
$$

$$
\begin{aligned}
& =\sum_{i=1}^{m} K_{i j} \operatorname{Prob}\left(Y_{i} \cap X_{k}\right) \\
& =\sum_{i=1}^{m} K_{i j} J_{i k}
\end{aligned}
$$

That is, $E=K^{T} J$.

Notice that $\mathbf{1}^{T} E \mathbf{1}=1$.

Example: Error Analysis

For the coins example, we have

$$
E=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0.05 & 0.075 & 0.025 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.075 & 0.125 & 0.6 & 0.05 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Some rows are zero, since, e.g., we never estimate that are no coins in the bag.
- Ideally, we would have E zero on the off-diagonal elements.
- Notice that each column j sums to the prior probability $\operatorname{Prob}\left(X_{j}\right)$

Error Analysis

The probability that the estimate is correct is

$$
\begin{aligned}
\sum_{j=1}^{n} E_{j j} & =\operatorname{trace} E \\
& =\sum_{j=1}^{n} \sum_{i=1}^{m} K_{i j} J_{i j}
\end{aligned}
$$

Hence to maximize the probability of a correct estimate, we pick K so that

$$
K_{i j}= \begin{cases}1 & \text { if } J_{i j} \text { is the largest element of row } i \text { of } J \\ 0 & \text { otherwise }\end{cases}
$$

This is exactly the MAP classifier; i.e.,
The MAP classifier maximizes the probability of a correct estimate

Cost Functions

Suppose we now assign costs to errors

$$
C_{j k}=\text { cost when } X_{j} \text { is estimated and } X_{k} \text { occurs }
$$

The expected cost is

$$
\begin{aligned}
\mathbf{E} C & =\sum_{j=1}^{n} \sum_{k=1}^{n} C_{j k} \operatorname{Prob}\left(j_{\text {est }}=j \text { and } X_{k}\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} C_{j k} E_{j k} \\
& =\operatorname{trace}\left(E C^{T}\right) \\
& =\operatorname{trace}\left(K^{T} J C^{T}\right)
\end{aligned}
$$

This is called the Bayes risk

Cost Functions

Suppose we assign cost

$$
C_{j k}=\left\{\begin{array}{ll}
1 & \text { if } j \neq q \\
0 & \text { otherwise }
\end{array} \quad\right. \text { i.e., the estimate is wrong }
$$

That is

$$
C=\left[\begin{array}{cccc}
0 & 1 & \ldots & \\
1 & 0 & \ddots & \\
\vdots & \ddots & \ddots & \\
\vdots & & & 0 \\
1 & \ldots & & 1
\end{array}\right]=\mathbf{1 1}^{T}-I
$$

Then the Bayes risk is

$$
\mathbf{E} C=\operatorname{trace}\left(E\left(\mathbf{1 1}^{T}-I\right)\right)=1-\operatorname{trace} E
$$

- Hence minimizing this cost function maximizes the probability of a correct estimate.
- So the MAP classifier minimizes this cost function.

Choosing a Cost Function

Suppose we consider the radar example, where

$$
\begin{aligned}
& X_{1}=\text { the event that there are no aircraft present } \\
& X_{2}=\text { the event that there is an aircraft present }
\end{aligned}
$$

Then we may significantly prefer false positives to false negatives.

In that case we could choose, for example

$$
C=\left[\begin{array}{cc}
0 & 100 \\
1 & 0
\end{array}\right]
$$

- C_{21} is the cost for estimating X_{2} when X_{1} occurs i.e., the cost for false positives
- C_{12} is the cost for estimating X_{1} when X_{2} occurs i.e., the cost for false negatives

Example: Choosing a Cost Function

We would like to minimize $\mathbf{E} C=\operatorname{trace}\left(K^{T} J C^{T}\right)$, so we pick the smallest element in each row of $J C^{T}$

$$
A=\left[\begin{array}{cc}
0.1 & 0 \\
0.2 & 0 \\
0.4 & 0 \\
0.2 & 0.1 \\
0.1 & 0.2 \\
0 & 0.4 \\
0 & 0.2 \\
0 & 0.1
\end{array}\right] \quad C=\left[\begin{array}{cc}
0 & 100 \\
1 & 0
\end{array}\right] \quad x=\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right] \quad J C^{T}=\left[\begin{array}{cc}
0 & 0.05 \\
\hline 0 & 0.1 \\
\hline 0 & 0.2 \\
5 & 0.1 \\
10 & 0.05 \\
20 & 0 \\
10 & 0 \\
5 & 0 \\
\hline 0
\end{array}\right]
$$

Trade-offs

Often we would like to examine the trade off between

- $J_{1}=$ the probability of making a false positive error.
- $J_{2}=$ the probability of making a false negative error.
- usually the objectives are competing
- we can make one smaller at the expense of making the other larger

Trade-off Curve

- shaded area shows $\left(J_{2}, J_{1}\right)$ achieved by some $x \in \mathbb{R}^{n}$
- clear area shows $\left(J_{2}, J_{1}\right)$ not achieved by any $x \in \mathbb{R}^{n}$
- boundary of region is called optimal trade-off curve
- corresponding x called Pareto optimal

three example choices of $x: x^{(1)}, x^{(2)}, x^{(3)}$
- $x^{(3)}$ is worse than $x^{(2)}$ on both counts (J_{2} and J_{1})
- $x^{(1)}$ is better than $x^{(2)}$ in J_{2}, but worse in J_{1}

Weighted-Sum Objective

to find Pareto optimal points, i.e. x 's on optimal trade-off curve, we minimize the weighted-sum objective:

$$
J_{1}+\mu J_{2}
$$

parameter $\mu \geq 0$ gives relative weight between J_{1} and J_{2}

points where weighted sum is constant, $J_{1}+\mu J_{2}=\alpha$ correspond to line with slope $-\mu$

- $x^{(2)}$ minimizes the weighted-sum objective for μ shown
- by varying μ from 0 to $+\infty$, we can sweep out the entire optimal trade-off curve
- In some cases, the trade-off curve may not be convex; then there are Pareto points that are not found by minimizing a weighted sum.

Weighted-Sum Objective

We have

$$
\begin{aligned}
& J_{1}=\operatorname{Prob}\left(j_{\text {est }}=2 \cap X_{1}\right) \\
& J_{2}=\operatorname{Prob}\left(j_{\text {est }}=1 \cap X_{2}\right)
\end{aligned}
$$

and we would like to minimize $J_{1}+\mu J_{2}$

This is the same as picking cost matrix

$$
C=\left[\begin{array}{ll}
0 & \mu \\
1 & 0
\end{array}\right]
$$

This is called the Neyman-Pearson cost function.

Example: Weighted-Sum Objective

Consider the joint probabilities

with prior probabilities

$$
\operatorname{Prob}\left(X_{1}\right)=0.6 \quad \operatorname{Prob}\left(X_{2}\right)=0.4
$$

Example: Weighted-Sum Objective

The trade-off curve is below

- This curve is called the operating characteristic
- Note intersections with axes at prior probabilities
- The pareto-optimal points are a finite set, not a continuous curve, since there are only a few choices for threshold value.

Operating characteristic

- Also called the receiver operating characteristic or ROC.
- Often plotted other way up

Example: Trading off Errors

With $\mu=1$

With $\mu=10$

Example: Trading off Errors

The operating characteristic becomes gentler when it is hard to distinguish X_{1} from X_{2}

Conditional Errors

The conditional error matrix $E^{\text {cond }} \in \mathbb{R}^{n \times n}$ is

$$
\begin{aligned}
E_{j k}^{\text {cond }} & =\text { probability that } X_{j} \text { is estimated given that } X_{k} \text { occurred } \\
& =\operatorname{Prob}\left(j_{\text {est }}=j \mid X_{k}\right) \\
& =\sum_{i=1}^{m} \operatorname{Prob}\left(j_{\text {est }}=j \text { and } Y_{i} \mid X_{k}\right) \text { since the } Y_{i} \text { partition } \Omega \\
& =\sum_{i=1}^{m} \operatorname{Prob}\left(\bigcup\left\{Y_{p} \mid \phi(p)=j\right\} \cap Y_{i} \mid X_{k}\right)
\end{aligned}
$$

Now notice that

$$
\begin{aligned}
\bigcup\left\{Y_{p} \mid \phi(p)=j\right\} \cap Y_{i} & = \begin{cases}Y_{i} & \text { if } \phi(i)=j \\
\emptyset & \text { otherwise }\end{cases} \\
& = \begin{cases}Y_{i} & \text { if } K_{i j}=1 \\
\emptyset & \text { otherwise }\end{cases}
\end{aligned}
$$

Conditional Errors

Therefore we have

$$
\begin{aligned}
E_{j k}^{\text {cond }} & =\sum_{i=1}^{m} K_{i j} \operatorname{Prob}\left(Y_{i} \mid X_{k}\right) \\
& =\sum_{i=1}^{m} K_{i j} A_{i k}
\end{aligned}
$$

That is

$$
E^{\text {cond }}=K^{T} A
$$

Conditional Errors

For the coins example, we have

$$
E^{\text {cond }}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & 0.5 & 1 / 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.5 & 5 / 6 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$E_{j k}^{\text {cond }}$ is the probability that X_{j} is estimated given that X_{k} occurred

- $\mathbf{1}^{T} E^{\text {cond }}=1^{T}$, i.e., the column sums are one Because, when X_{k} occurs, some X_{j} is always estimated
- Ideally we would like $E^{\text {cond }}=I$

Maximum-Likelihood

When we do not have any prior probabilities, a commonly used heuristic is the method of maximum likelihood.

- MAP estimate: pick j to maximize the joint probability

$$
\operatorname{Prob}\left(Y_{i} \mid X_{j}\right) \operatorname{Prob}\left(X_{j}\right)
$$

- Max Likelihood: pick j to maximize the a-priori probability

$$
\operatorname{Prob}\left(Y_{i} \mid X_{j}\right)
$$

- We can also minimize costs associated with errors. In this case we minimize trace $\left(E^{\text {cond }} C^{T}\right)$ instead of trace $\left(E C^{T}\right)$.
- Similarly, we can construct a trade-off curve using these costs.
- The estimates are identical to those obtained when all prior probabilities are equal.

