7 - Continuous random variables

- Continuous random variables
- The cumulative distribution function
- The uniform random variable
- Gaussian random variables
- The Gaussian cdf
- Collecting data
- Induced probability density functions
- Example: linear transformations
- Example: non-invertible transformations
- Simulation of random variables

Continuous random variables

A continuous random variable $x: \Omega \rightarrow \mathbb{R}$ is specified by its (induced) cumulative distribution function (cdf)

$$
F^{x}(z)=\operatorname{Prob}(x \leq z)
$$

Then we have

$$
\operatorname{Prob}(x \in[a, b])=F^{x}(b)-F^{x}\left(a^{-}\right)
$$

Properties of the cumulative distribution function

- $F^{x}(a) \geq 0$ for all a
- F^{x} is a non-decreasing function $F^{x}(a) \leq F^{x}(b)$ if $a \leq b$
- F^{x} is right continuous, i.e,.

$$
\lim _{z \rightarrow a^{+}} F^{x}(z)=F^{x}(a)
$$

Properties of the cumulative distribution function

If F^{x} is differentiable, then the induced probability density function (pdf) is

$$
p^{x}(z)=\frac{d F^{x}(z)}{d z}
$$

then

$$
\operatorname{Prob}(x \in[a, b])=\int_{a}^{b} p^{x}(z) d z
$$

- Notice that $p^{x}(z)$ is not a probability; it may be greater than 1 .
- We use notation $x \sim p^{x}$ to mean x is a random variable with pdf p^{x}

Properties of the cumulative distribution function

If x is a discrete random variable, then F is just a staircase function

- The corresponding probability density function is a sum of δ functions.

The uniform random variable

The uniform random variable $x \sim U[a, b]$ has pdf

$$
p^{x}(z)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq z \leq b \\ 0 & \text { otherwise }\end{cases}
$$

Gaussian random variables

The random variable x is Gaussian if it has pdf

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

write this as $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

- the mean or expected value of x is $\quad \mathbf{E}(x)=\int_{-\infty}^{\infty} x p(x) d x=\mu$
- the variance of x is $\quad \mathbf{E}\left((x-\mu)^{2}\right)=\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x=\sigma^{2}$

Gaussian random variables

pdf for $x \sim \mathcal{N}(0,1)$ is

- p is symmetric about the mean
- decays very fast; but $p(x)>0$ for all x

Computing probabilities for Gaussian random variables

The error function is

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

The Gaussian CDF is

$$
F_{\mathcal{N}}(a)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{a-\mu}{\sigma \sqrt{2}}\right)
$$

When $\mu=0$ and $\sigma=1$,

Computing probabilities for Gaussian random variables

so for $x \sim \mathcal{N}\left(0, \sigma^{2}\right)$ we have for $a \geq 0$

$$
\operatorname{Prob}(x \in[-a, a])=\operatorname{erf}\left(\frac{a}{\sigma \sqrt{2}}\right)
$$

Some particular values:

$$
\begin{aligned}
\operatorname{Prob}(x \in[-\sigma, \sigma]) & \approx 0.68 \\
\operatorname{Prob}(x \in[-2 \sigma, 2 \sigma]) & \approx 0.9545 \\
\operatorname{Prob}(x \in[-3 \sigma, 3 \sigma]) & \approx 0.9973
\end{aligned}
$$

Collecting data

- For discrete random variables, we can collect data and count the frequencies of outcomes
This converges to the true pmf.
- The analogous procedure for continuous random variables uses the cumulative distribution function.

Suppose $S=\left\{z_{1}, \ldots, z_{n}\right\}$ are n samples of a real-valued random variable.
Let $F(a)$ be the fraction of samples less than or equal to a, given by

$$
F(a)=\frac{|\{z \in S \mid z \leq a\}|}{n}
$$

- F is a piecewise constant function, called the empirical $c d f$

Example: collecting data

Suppose $x \sim \mathcal{N}(0,1)$.
The plots below show 25 and 250 data points, respectively.

Induced probability density

Suppose we have

- $x: \Omega \rightarrow \mathbb{R}$ is a random variable with induced pdf $p^{x}: \mathbb{R} \rightarrow \mathbb{R}$.
- y is a function of x, given by $y=g(x)$

What is the induced pdf of y ?

The key idea is that we need to change variables for integration of probabilities. Recall the following.

If f and h^{\prime} are continuous, then

$$
\int_{h(a)}^{h(b)} f(x) d x=\int_{a}^{b} f(h(y)) h^{\prime}(y) d y
$$

Induced probability density

Assume g^{\prime} is continuous, and g is strictly increasing, i.e.,

$$
\text { if } a<b \text { then } g(a)<g(b)
$$

This implies that g is invertible, i.e., for every y there is a unique x such that $y=g(x)$.

We would like to find the pdf of y is p^{y}, which satisfies for $a \leq b$,

$$
\operatorname{Prob}(y \in[a, b])=\int_{a}^{b} p^{y}(y) d y
$$

We also know that this probability is

$$
\begin{aligned}
\operatorname{Prob}(y \in[a, b]) & =\operatorname{Prob}(g(x) \in[a, b]) \\
& =\operatorname{Prob}\left(x \in\left[g^{-1}(a), g^{-1}(b)\right]\right) \text { since } g \text { is increasing } \\
& =\int_{g^{-1}(a)}^{g^{-1}(b)} p^{x}(x) d x
\end{aligned}
$$

Induced probability density

We have

$$
\int_{a}^{b} p^{y}(y) d y=\int_{g^{-1}(a)}^{g^{-1}(b)} p^{x}(x) d x
$$

Now we can apply the change of variables $x=h(y)$ to the integral on the right hand side, where $h=g^{-1}$. We have

$$
h^{\prime}(y)=\frac{1}{g^{\prime}\left(g^{-1}(y)\right)}
$$

because $g(h(y))=y$, so $\frac{d}{d y} g(h(y))=1$, i.e., $g^{\prime}(h(y)) h^{\prime}(y)=1$

Therefore, by the change of variables formula

$$
\int_{a}^{b} p^{y}(y) d y=\int_{a}^{b} \frac{p^{x}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)} d y
$$

Induced probability density

Since this holds for all a and b, we have the following.
If $y=g(x)$, and g is strictly increasing with g^{\prime} continuous, then the pdf of y is

$$
p^{y}(y)=\frac{p^{x}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)}
$$

More generally, if $g^{\prime}(x) \neq 0$ for all x, then

$$
p^{y}(y)=\frac{p^{x}\left(g^{-1}(y)\right)}{\left|g^{\prime}\left(g^{-1}(y)\right)\right|}
$$

Example: linear transformations

Suppose $x: \Omega \rightarrow \mathbb{R}$, and $y=\alpha x+\beta$

We have

$$
p^{y}(y)=\frac{1}{|\alpha|} p^{x}\left(\frac{y-\beta}{\alpha}\right)
$$

Non-invertible transformations

What happens when g is not invertible? e.g., when $y=x^{2}$

$$
\begin{aligned}
\operatorname{Prob}(y \in[a, b]) & =\operatorname{Prob}\left(x^{2} \in[a, b]\right) \\
& =\operatorname{Prob}(x \in[-\sqrt{b},-\sqrt{a}])+\operatorname{Prob}(x \in[\sqrt{a}, \sqrt{b}]) \\
& =\int_{-\sqrt{b}}^{-\sqrt{a}} p^{x}(x) d x+\int_{\sqrt{a}}^{\sqrt{b}} p^{x}(x) d x \\
& =\int_{a}^{b} \frac{p^{x}(-\sqrt{y})}{2 \sqrt{y}} d y+\int_{a}^{b} \frac{p^{x}(\sqrt{y})}{2 \sqrt{y}} d y
\end{aligned}
$$

$$
y=x^{2} \quad \Longrightarrow \quad p^{y}(y)=\frac{1}{2 \sqrt{y}}\left(p^{x}(-\sqrt{y})+p^{x}(\sqrt{y})\right)
$$

Simulation of random variables

We are given $F: \mathbb{R} \rightarrow[0,1]$

- We would like to simulate a random variable y so that it has cumulative distribution function F
- We have a source of uniform random variables $x \sim U[0,1]$

To construct y, set

$$
y=F^{-1}(x)
$$

Because

$$
\begin{aligned}
\operatorname{Prob}(y \leq a) & =\operatorname{Prob}\left(F^{-1}(x) \leq a\right) \\
& =\operatorname{Prob}(x \leq F(a)) \\
& =F(a)
\end{aligned}
$$

- This works when F is invertible and continuous

