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7 - Continuous random variables

• Continuous random variables

• The cumulative distribution function

• The uniform random variable

• Gaussian random variables

• The Gaussian cdf

• Collecting data

• Induced probability density functions

• Example: linear transformations

• Example: non-invertible transformations

• Simulation of random variables
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Continuous random variables

A continuous random variable x : Ω → R is specified by its (induced) cumulative distri-

bution function (cdf)

F x(z) = Prob(x ≤ z)

1

F (a)

a

Then we have
Prob(x ∈ [a, b]) = F x(b) − F x(a−)
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Properties of the cumulative distribution function

1

F (a)

a

• F x(a) ≥ 0 for all a

• F x is a non-decreasing function F x(a) ≤ F x(b) if a ≤ b

• F x is right continuous, i.e,.

lim
z→a+

F x(z) = F x(a)
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Properties of the cumulative distribution function

If F x is differentiable, then the induced probability density function (pdf) is

px(z) =
dF x(z)

dz

then

Prob(x ∈ [a, b]) =

∫ b

a

px(z) dz

• Notice that px(z) is not a probability; it may be greater than 1.

• We use notation x ∼ px to mean x is a random variable with pdf px
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Properties of the cumulative distribution function

If x is a discrete random variable, then F is just a staircase function

1

F (a)

a

• The corresponding probability density function is a sum of δ functions.



7 - 6 Continuous random variables S. Lall, Stanford 2011.01.25.01

The uniform random variable

The uniform random variable x ∼ U [a, b] has pdf

px(z) =











1

b − a
if a ≤ z ≤ b

0 otherwise
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Gaussian random variables

The random variable x is Gaussian if it has pdf

p(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2

write this as x ∼ N (µ, σ2)

• the mean or expected value of x is E(x) =

∫ ∞

−∞
xp(x) dx = µ

• the variance of x is E
(

(x − µ)2
)

=

∫ ∞

−∞
(x − µ)2p(x) dx = σ2
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Gaussian random variables

pdf for x ∼ N (0, 1) is

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p(a)

a

• p is symmetric about the mean

• decays very fast; but p(x) > 0 for all x
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Computing probabilities for Gaussian random variables

The error function is

erf(x) =
2√
π

∫ x

0

e−t2 dt

The Gaussian CDF is

FN (a) =
1

2
+

1

2
erf

(

a − µ

σ
√

2

)

When µ = 0 and σ = 1,
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Computing probabilities for Gaussian random variables

so for x ∼ N (0, σ2) we have for a ≥ 0

Prob(x ∈ [−a, a]) = erf

(

a

σ
√

2

)

Some particular values:

Prob(x ∈ [−σ, σ]) ≈ 0.68

Prob(x ∈ [−2σ, 2σ]) ≈ 0.9545

Prob(x ∈ [−3σ, 3σ]) ≈ 0.9973
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Collecting data

• For discrete random variables, we can collect data and count the frequencies of
outcomes

This converges to the true pmf.

• The analogous procedure for continuous random variables uses the cumulative distri-

bution function.

Suppose S = {z1, . . . , zn} are n samples of a real-valued random variable.

Let F (a) be the fraction of samples less than or equal to a, given by

F (a) =
|{ z ∈ S | z ≤ a }|

n

• F is a piecewise constant function, called the empirical cdf
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Example: collecting data

Suppose x ∼ N (0, 1).

The plots below show 25 and 250 data points, respectively.
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Induced probability density

Suppose we have

• x : Ω → R is a random variable with induced pdf px : R → R.

• y is a function of x, given by y = g(x)

What is the induced pdf of y?

The key idea is that we need to change variables for integration of probabilities. Recall
the following.

If f and h′ are continuous, then

∫ h(b)

h(a)

f (x) dx =

∫ b

a

f
(

h(y)
)

h′(y) dy
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Induced probability density

Assume g′ is continuous, and g is strictly increasing; i.e.,

if a < b then g(a) < g(b)

This implies that g is invertible, i.e., for every y there is a unique x such that y = g(x).

We would like to find the pdf of y is py, which satisfies for a ≤ b,

Prob(y ∈ [a, b]) =

∫ b

a

py(y) dy

We also know that this probability is

Prob(y ∈ [a, b]) = Prob(g(x) ∈ [a, b])

= Prob
(

x ∈ [g−1(a), g−1(b)]
)

since g is increasing

=

∫ g−1(b)

g−1(a)

px(x) dx
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Induced probability density

We have
∫ b

a

py(y) dy =

∫ g−1(b)

g−1(a)

px(x) dx

Now we can apply the change of variables x = h(y) to the integral on the right hand side,
where h = g−1. We have

h′(y) =
1

g′
(

g−1(y)
)

because g(h(y)) = y, so
d

dy
g(h(y)) = 1, i.e., g′(h(y))h′(y) = 1

Therefore, by the change of variables formula

∫ b

a

py(y) dy =

∫ b

a

px
(

g−1(y)
)

g′
(

g−1(y)
) dy
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Induced probability density

Since this holds for all a and b, we have the following.

If y = g(x), and g is strictly increasing with g′ continuous, then the pdf of y is

py(y) =
px

(

g−1(y)
)

g′
(

g−1(y)
)

More generally, if g′(x) 6= 0 for all x, then

py(y) =
px

(

g−1(y)
)

∣

∣g′
(

g−1(y)
)∣

∣



7 - 17 Continuous random variables S. Lall, Stanford 2011.01.25.01

Example: linear transformations

Suppose x : Ω → R, and y = αx + β

a

y

x

b

gà1(a) gà1(b)

We have

py(y) =
1

|α|p
x

(

y − β

α

)
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Non-invertible transformations

What happens when g is not invertible? e.g., when y = x2

a

y

x

b

Prob(y ∈ [a, b]) = Prob(x2 ∈ [a, b])

= Prob(x ∈ [−
√

b,−√
a]) + Prob(x ∈ [

√
a,
√

b])

=

∫ −√
a

−
√

b

px(x) dx +

∫

√
b

√
a

px(x) dx

=

∫ b

a

px(−√
y)

2
√

y
dy +

∫ b

a

px(
√

y)

2
√

y
dy

y = x2
=⇒ py(y) =

1

2
√

y

(

px(−√
y) + px(

√
y)

)
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Simulation of random variables

We are given F : R → [0, 1]

• We would like to simulate a random variable y so that it has cumulative distribution

function F

• We have a source of uniform random variables x ∼ U [0, 1]

To construct y, set

y = F−1(x)

Because

Prob(y ≤ a) = Prob(F−1(x) ≤ a)

= Prob(x ≤ F (a))

= F (a)

• This works when F is invertible and continuous


