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8 - Continuous random vectors

• Mean-square deviation

• Mean-variance decomposition

• Gaussian random vectors

• The Gamma function

• The χ2 distribution

• Confidence ellipsoids

• Marginal density functions

• Example: marginal pdfs for Gaussians

• Degenerate Gaussian random vectors

• Changes of variables for random vectors

• Linear transformations of Gaussians

• Example: Gaussian force on mass

• Distributions and densities in Matlab
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Continuous random vectors

The random vector x : Ω → R
n has induced pdf px : R

n → R.

For any subset A ⊂ R
n, we have

Prob(x ∈ A) =

∫

A

px(x) dx

the mean or expected value of x is

E(x) =

∫

Rn
xpx(x) dx

the covariance of x is

cov(x) = E
(

(x − µ)(x − µ)T
)

=

∫

Rn
(x − µ)(x − µ)Tpx(x) dx
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Mean-square deviation

Suppose x : Ω → R
n is a random variable, with mean µ.

The mean square deviation from the mean is given by

E
(

‖x − µ‖2
)

= trace cov(x)

Because

E
(

‖x − µ‖2
)

= E
(

(x − µ)T (x − µ)
)

= Etrace
(

(x − µ)T (x − µ)
)

= Etrace
(

(x − µ)(x − µ)T
)

since trace(AB) = trace(BA)

= traceE
(

(x − µ)(x − µ)T
)

since EAx = AE x
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The mean-variance decomposition

The mean square of a random variable x : Ω → R
n is

E
(

‖x‖2
)

= trace
(

cov(x)
)

+ ‖E x‖2

This holds because

E
(

‖x‖2
)

= E
(

‖x − µ + µ‖2
)

= E
(

‖x − µ‖2 + 2µT (x − µ) + ‖µ‖2
)

= E
(

‖x − µ‖2
)

+ 2µT E(x − µ) + ‖µ‖2
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Correlation and covariance

The correlation matrix of random vector x is

corr(x) = E(xxT )

• If E x = 0 then corr(x) = cov(x)

• The mean square of x is E
(

‖x‖2
)

= trace corr(x)

The correlation-covariance decomposition is

corr(x) = cov(x) + (E x)(E xT )

proof takes the same approach as the mean-variance formula
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Gaussian random vectors

The random variable x : Ω → R
n is called Gaussian if it has induced pdf

px(x) =
1

(2π)
n
2 (det Σ)

1
2

exp

(

−1

2
(x − µ)TΣ−1(x − µ)

)

write this as x ∼ N (µ, Σ), here Σ = ΣT and Σ > 0
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Gaussian random vectors

Suppose x ∼ N (µ, Σ). Then

• The mean of x is

E x = µ

• The covariance of x is

cov(x) = Σ
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Ellipsoids

the Gaussian pdf is constant on the surface of the ellipsoids

Sα =
{

x ∈ R
n

∣

∣ (x − µ)TΣ−1(x − µ) ≤ α
}

center is at µ, semiaxis lengths are
√

αλi(Σ).

Example:

µ =

[

1
3

]

Σ =

[

2 1
1 1

]

contours at p(x) = 0.01, 0.02, . . .
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Gamma function

the gamma function is

Γ(x) =

∫ ∞

0

tx−1e−t dt for x > 0

for x > 0

Γ(x + 1) = xΓ(x)

Γ(1) = 1, so for integer x > 1

Γ(x) = (x − 1)!
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The χ2 distribution

The χ2
n probability density function is

pχ2
n
(z) =

1

2
n
2Γ(n/2)

z
n
2−1e−

z
2

• A family of pdfs, one for each n > 0

• If z ∼ χ2
n, then E z = n
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Gaussian random vectors and confidence ellipsoids

Suppose x : Ω → R
n is Gaussian, i.e., x ∼ N (µ, Σ). Define the random variable

z = (x − µ)TΣ−1(x − µ)

which is a measure of the distance of x from µ

• z has a χ2
n distribution

• Hence prob. that x lies in the ellipsoid Sα =
{

x ∈ R
n

∣

∣ (x− µ)TΣ−1(x− µ) ≤ α
}

Prob(x ∈ Sα) = Fχ2
n
(α)

• for example Fχ2
n
(α) ≈

{

1
2 if α = n

0.9 if α = n + 2
√

n 90% confidence ellipsoid
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Confidence ellipsoids

The plot shows the confidence ellipsoids and 200 sample points.
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Marginal probability density functions

Suppose x : Ω → R
n is an RV with pdf px : R

n → R, and x =

[

x1

x2

]

, where x1 ∈ R
r.

Define the marginal pdf of x1 to be the function px1 such that

Prob(x1 ∈ W ) =

∫

W

px1(z) dz for all W ⊂ Rr

We also know that

Prob(x1 ∈ W ) =

∫

W

∫

x2∈Rn−r
px(x1, x2) dx2 dx1

Since these are equal, we have

px1(x1) =

∫

x2∈Rn−r
px(x1, x2) dx2
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The marginal pdf of a Gaussian

Suppose x ∼ N (µ, Σ), and

x =

[

x1

x2

]

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

µ =

[

µ1

µ2

]

Let’s look at the component x1

• Since x1 =
[

I 0
]

x, we have the mean

E x1 =
[

I 0
]

µ = µ1

and also the covariance

cov(x1) =
[

I 0
]

Σ

[

I
0

]

= Σ11

• In fact, the random variable x1 is Gaussian; this is not obvious
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Proof: the marginal pdf of a Gaussian

Assume for convenience that E x = 0. The marginal pdf of x1 is

px1(x1) =

∫

x2

c1 exp

(

−1

2

[

x1

x2

]T

Σ−1

[

x1

x2

])

dx2

We have, by the completion of squares formula

[

Σ11 Σ12

Σ21 Σ22

]−1

=

[

I −Σ−1
11 Σ12

0 I

] [

Σ−1
11 0
0 (Σ22 − Σ21Σ

−1
11 Σ12)

−1

] [

I 0
−Σ21Σ

−1
11 I

]

and so, setting S = Σ22 − Σ21Σ
−1
11 Σ12

[

x1

x2

]T

Σ−1

[

x1

x2

]

= xT
1 Σ−1

11 x1 + (x2 − Σ21Σ
−1
11 x1)

TS−1(x2 − Σ21Σ
−1
11 x1)
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Proof: the marginal pdf of a Gaussian

Hence we have

px1(x1) = c1 exp

(

−1

2
xT

1 Σ−1
11 x1

)
∫

x2

exp
(

−1

2
(x2 − Σ21Σ

−1
11 x1)

TS−1(x2 − Σ21Σ
−1
11 x1)

)

dx2

= c2 exp

(

−1

2
xT

1 Σ−1
11 x1

)

Now c2 is determined, because

∫

px1(z) dz = 1, so we don’t need to calculate it explicitly.

Therefore, if x ∼ N (0, Σ) the marginal pdf of x1 is Gaussian, and

x1 ∼ N (0, Σ11)
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Example: marginal pdf for Gaussians

Suppose Σ =

[

2 0.8
0.8 1

]

and x ∼ N (0, Σ). A simulation of 1000 points is below
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• all blue and orange points (908) are within 90% confidence ellipsoid for x

• all blue and red points (899) are within 90% confidence interval for x1



8 - 18 Continuous random vectors S. Lall, Stanford 2011.01.25.01

Degenerate Gaussian random vectors

• it’s convenient to allow Σ singular, but still Σ = ΣT and Σ ≥ 0
this means that in some directions, x is not random at all

• obviously density formula does not hold; instead write

Σ =
[

Q1 Q2

]

[

Σ1 0
0 0

]

[

Q1 Q2

]T

where Q =
[

Q1 Q2

]

is orthogonal, and Σ1 > 0

columns of Q1 are orthonormal basis for range(Σ)
columns of Q2 are orthonormal basis for null(Σ)

• let

[

z
w

]

= QTx; then

z ∼ N (QT
1 µ, Σ1) is non-degenerate Gaussian

w = QT
2 µ is not random
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Changes of variables for random vectors

Suppose f : R
n → R is continuous, and h : R

n → R
n satisfies

• h is one-to-one and onto; i.e., h is invertible

• Both h and h−1 are differentiable, with continuous derivative

The derivative of h at x is Dh(x), the Jacobian matrix

(

Dh(x)
)

ij
=

∂hi

∂xj
(x)

Then for any A ⊂ R
n

∫

h(A)

f (x) dx =

∫

A

f
(

h(y)
)
∣

∣det Dh(y)
∣

∣ dy
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Changes of variables for random vectors

Suppose x : Ω → R
n is a random vector, and y = g(x), where g is invertible, and g and

g−1 are continuously differentiable. Then

py(y) =
px

(

g−1(y)
)

∣

∣det(Dg)
(

g−1(y)
)
∣

∣

As in the scalar case, this holds because

Prob(y ∈ A) =

∫

A

py(y) dy

=

∫

g−1(A)

px(x) dx

=

∫

A

px
(

g−1(y)
)

∣

∣det(Dg)
(

g−1(y)
)
∣

∣

dy

where D(g−1)(y) =
(

(Dg)
(

g−1(y)
)

)−1
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Example: linear transformations

Consider y = Ax + b, where A ∈ R
n×n is invertible. Then

py(y) =
px

(

A−1(y − b)
)

|det A|
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Linear transformations of Gaussians

a linear function of a Gaussian random vector is a Gaussian random vector

Suppose x ∼ N (µx, Σx), A ∈ R
m×n and b ∈ R

m. Consider the linear function of x

y = Ax + b

• we already know how means and covariances transform; we have

E(y) = AE x + b cov(y) = A cov(x)AT

• The amazing fact is that y is Gaussian
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Linear transformations of Gaussians

To show this, first suppose A ∈ R
n×n is invertible. Let µy = Aµx + b and Σy = AΣxA

T .

We know

px(x) =
1

(2π)
n
2 (det Σx)

1
2

exp

(

−1

2
(x − µ)TΣ−1

x (x − µ)

)

So

py(y) =
px

(

A−1(y − b)
)

|det A|

=
1

|det A|(2π)
n
2 (det Σx)

1
2

exp

(

−1

2
(y − b − Aµx)

T (A−1)TΣ−1
x A−1(y − b − Aµx)

)

=
1

(2π)
n
2 (det Σy)

1
2

exp

(

−1

2
(y − µy)

TΣ−1
y (y − µy)

)
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Non-invertible linear transformations of Gaussians

Suppose A ∈ R
m×n, and y = Ax where x ∼ N (0, Σx). The SVD of A is

A = UΣV T =
[

U1 U2

]

[

Σ1 0
0 0

] [

V T
1

V T
2

]

ÎV x UÎV xV xx
V Î U
T

T TT

This decomposes the map into

y = Uw

[

w1

w2

]

= Σz

[

z1

z2

]

= V Tx
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Non-invertible linear transformations of Gaussians

Since V is invertible, we know z ∼ N (0, Σz), where

Σz =

[

V T
1

V T
2

]

Σx

[

V1 V2

]

We know z is Gaussian, hence the marginal z1 is Gaussian

z1 ∼ N (0, V T
1 ΣxV1)

Also w2 = 0, and since Σ1 is invertible, w1 is Gaussian

w1 ∼ N (0, Σ1V
T
1 ΣxV1Σ1)

Since w = UTy, we have y is a degenerate Gaussian random vector where

• w1 = UT
1 y are the components of y that are Gaussian

• w2 = 0 are the components of y that are not random



8 - 26 Continuous random vectors S. Lall, Stanford 2011.01.25.01

Full-rank case

When range(A) = R
m, i.e., A is full row rank, we have

y ∼ N (0, AΣxA
T )

Because the SVD of A is

A = U
[

Σ1 0
]

[

V T
1

V T
2

]

Then y = Uw1, and since U is invertible, we have

y ∼ N (0, UΣ1V
T
1 ΣxV1Σ1U

T )
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Example: simulating Gaussian random vectors

In Matlab, its easy to generate x ∼ N (0, I)

x=randn(n,1)

to generate y ∼ N (µ, Σ), we can use

y = Σ
1
2x + µ

extremely useful for simulation
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Example: Gaussian random force on mass

• x is the sequence of applied forces, so f (t) = xj for t in the interval [j − 1, j].

• y1, y2 are final position and velocity

• y = Ax where A =

[

9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5
1 1 1 1 1 1 1 1 1 1

]

• suppose the forces are Gaussian, and the vector x ∼ N (0, Σ), where

Σ =































2 1
1 2 1

1 2 1
1 2 1

1 2 1
1 2 1

1 2 1
1 2 1

1 2 1
1 2






























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Example: Gaussian random force on mass

the covariance of y is
Σy = AΣAT

the 90% confidence ellipsoid is
{

y ∈ R
2 | yTΣ−1

y y ≤ F−1
χ2

n
(0.9)

}
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Components of a Gaussian random vector

Suppose x : Ω → R
n and x ∼ N (0, Σ), and let c ∈ R

n be a unit vector

Let y = cTx

• y is the component of x in the direction c

• y is Gaussian, with E y = 0 and cov(y) = cTΣc

• So E(y2) = cTΣc

• The unit vector c that minimizes cTΣc is the eigenvector of Σ with the smallest
eigenvalue. Then

E(y2) = λmin
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Distributions and densities in Matlab

Matlab has useful functions in the statistics toolbox:

chi2pdf Chi square density
normpdf Gaussian density

chi2cdf Chi square cdf
normcdf Gaussian cdf

chi2inv Chi square inverse cdf
norminv Gaussian inverse cdf

as well as gamma and erf


