8 - Continuous random vectors

- Mean-square deviation
- Mean-variance decomposition
- Gaussian random vectors
- The Gamma function
- The χ^{2} distribution
- Confidence ellipsoids
- Marginal density functions
- Example: marginal pdfs for Gaussians
- Degenerate Gaussian random vectors
- Changes of variables for random vectors
- Linear transformations of Gaussians
- Example: Gaussian force on mass
- Distributions and densities in Matlab

Continuous random vectors

The random vector $x: \Omega \rightarrow \mathbb{R}^{n}$ has induced $p d f p^{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
For any subset $A \subset \mathbb{R}^{n}$, we have

$$
\operatorname{Prob}(x \in A)=\int_{A} p^{x}(x) d x
$$

the mean or expected value of x is

$$
\mathbf{E}(x)=\int_{\mathbb{R}^{n}} x p^{x}(x) d x
$$

the covariance of x is

$$
\operatorname{cov}(x)=\mathbf{E}\left((x-\mu)(x-\mu)^{T}\right)=\int_{\mathbb{R}^{n}}(x-\mu)(x-\mu)^{T} p^{x}(x) d x
$$

Mean-square deviation

Suppose $x: \Omega \rightarrow \mathbb{R}^{n}$ is a random variable, with mean μ.
The mean square deviation from the mean is given by

$$
\mathbf{E}\left(\|x-\mu\|^{2}\right)=\operatorname{trace} \operatorname{cov}(x)
$$

Because

$$
\begin{array}{rlrl}
\mathbf{E}\left(\|x-\mu\|^{2}\right) & =\mathbf{E}\left((x-\mu)^{T}(x-\mu)\right) & \\
& =\mathbf{E} \operatorname{trace}\left((x-\mu)^{T}(x-\mu)\right) & & \\
& =\mathbf{E} \operatorname{trace}\left((x-\mu)(x-\mu)^{T}\right) & & \text { since } \operatorname{trace}(A B)=\operatorname{trace}(B A) \\
& =\operatorname{trace} \mathbf{E}\left((x-\mu)(x-\mu)^{T}\right) & & \text { since } \mathbf{E} A x=A \mathbf{E} x
\end{array}
$$

The mean-variance decomposition

The mean square of a random variable $x: \Omega \rightarrow \mathbb{R}^{n}$ is

$$
\mathbf{E}\left(\|x\|^{2}\right)=\operatorname{trace}(\operatorname{cov}(x))+\|\mathbf{E} x\|^{2}
$$

This holds because

$$
\begin{aligned}
\mathbf{E}\left(\|x\|^{2}\right) & =\mathbf{E}\left(\|x-\mu+\mu\|^{2}\right) \\
& =\mathbf{E}\left(\|x-\mu\|^{2}+2 \mu^{T}(x-\mu)+\|\mu\|^{2}\right) \\
& =\mathbf{E}\left(\|x-\mu\|^{2}\right)+2 \mu^{T} \mathbf{E}(x-\mu)+\|\mu\|^{2}
\end{aligned}
$$

Correlation and covariance

The correlation matrix of random vector x is

$$
\operatorname{corr}(x)=\mathbf{E}\left(x x^{T}\right)
$$

- If $\mathbf{E} x=0$ then $\operatorname{corr}(x)=\operatorname{cov}(x)$
- The mean square of x is $\mathbf{E}\left(\|x\|^{2}\right)=\operatorname{trace} \operatorname{corr}(x)$

The correlation-covariance decomposition is

$$
\operatorname{corr}(x)=\operatorname{cov}(x)+(\mathbf{E} x)\left(\mathbf{E} x^{T}\right)
$$

proof takes the same approach as the mean-variance formula

Gaussian random vectors

The random variable $x: \Omega \rightarrow \mathbb{R}^{n}$ is called Gaussian if it has induced pdf

$$
p^{x}(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}(\operatorname{det} \Sigma)^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

write this as $x \sim \mathcal{N}(\mu, \Sigma)$, here $\Sigma=\Sigma^{T}$ and $\Sigma>0$

Gaussian random vectors

Suppose $x \sim \mathcal{N}(\mu, \Sigma)$. Then

- The mean of x is

$$
\mathbf{E} x=\mu
$$

- The covariance of x is

$$
\operatorname{cov}(x)=\Sigma
$$

Ellipsoids

the Gaussian pdf is constant on the surface of the ellipsoids

$$
S_{\alpha}=\left\{x \in \mathbb{R}^{n} \mid(x-\mu)^{T} \Sigma^{-1}(x-\mu) \leq \alpha\right\}
$$

center is at μ, semiaxis lengths are $\sqrt{\alpha \lambda_{i}(\Sigma)}$.

Example:

$$
\begin{gathered}
\mu=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \\
\Sigma=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

contours at $p(x)=0.01,0.02, \ldots$

Gamma function

the gamma function is

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t \quad \text { for } x>0
$$

for $x>0$

$$
\Gamma(x+1)=x \Gamma(x)
$$

$\Gamma(1)=1$, so for integer $x>1$

$$
\Gamma(x)=(x-1)!
$$

The χ^{2} distribution

The χ_{n}^{2} probability density function is

$$
p_{\chi_{n}^{2}}(z)=\frac{1}{2^{\frac{n}{2}} \Gamma(n / 2)} z^{\frac{n}{2}-1} e^{-\frac{z}{2}}
$$

- A family of pdfs, one for each $n>0$
- If $z \sim \chi_{n}^{2}$, then $\mathbf{E} z=n$

Gaussian random vectors and confidence ellipsoids

Suppose $x: \Omega \rightarrow \mathbb{R}^{n}$ is Gaussian, i.e., $x \sim \mathcal{N}(\mu, \Sigma)$. Define the random variable

$$
z=(x-\mu)^{T} \Sigma^{-1}(x-\mu)
$$

which is a measure of the distance of x from μ

- z has a χ_{n}^{2} distribution
- Hence prob. that x lies in the ellipsoid $S_{\alpha}=\left\{x \in \mathbb{R}^{n} \mid(x-\mu)^{T} \Sigma^{-1}(x-\mu) \leq \alpha\right\}$

$$
\operatorname{Prob}\left(x \in S_{\alpha}\right)=F_{\chi_{n}^{2}}(\alpha)
$$

- for example $F_{\chi_{n}^{2}}(\alpha) \approx \begin{cases}\frac{1}{2} & \text { if } \alpha=n \\ 0.9 & \text { if } \alpha=n+2 \sqrt{n} \quad 90 \% \text { confidence ellipsoid }\end{cases}$

Confidence ellipsoids

The plot shows the confidence ellipsoids and 200 sample points.

Marginal probability density functions

Suppose $x: \Omega \rightarrow \mathbb{R}^{n}$ is an RV with pdf $p^{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, where $x_{1} \in \mathbb{R}^{r}$.

Define the marginal pdf of x_{1} to be the function $p^{x_{1}}$ such that

$$
\operatorname{Prob}\left(x_{1} \in W\right)=\int_{W} p^{x_{1}}(z) d z \quad \text { for all } W \subset R^{r}
$$

We also know that

$$
\operatorname{Prob}\left(x_{1} \in W\right)=\int_{W} \int_{x_{2} \in \mathbb{R}^{n-r}} p^{x}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}
$$

Since these are equal, we have

$$
p^{x_{1}}\left(x_{1}\right)=\int_{x_{2} \in \mathbb{R}^{n-r}} p^{x}\left(x_{1}, x_{2}\right) d x_{2}
$$

The marginal pdf of a Gaussian

Suppose $x \sim \mathcal{N}(\mu, \Sigma)$, and

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right] \quad \mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]
$$

Let's look at the component x_{1}

- Since $x_{1}=\left[\begin{array}{ll}I & 0\end{array}\right] x$, we have the mean

$$
\mathbf{E} x_{1}=\left[\begin{array}{ll}
I & 0
\end{array}\right] \mu=\mu_{1}
$$

and also the covariance

$$
\operatorname{cov}\left(x_{1}\right)=\left[\begin{array}{ll}
I & 0
\end{array}\right] \Sigma\left[\begin{array}{l}
I \\
0
\end{array}\right]=\Sigma_{11}
$$

- In fact, the random variable x_{1} is Gaussian; this is not obvious

Proof: the marginal pdf of a Gaussian

Assume for convenience that $\mathbf{E} x=0$. The marginal pdf of x_{1} is

$$
p^{x_{1}}\left(x_{1}\right)=\int_{x_{2}} c_{1} \exp \left(-\frac{1}{2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{T} \Sigma^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) d x_{2}
$$

We have, by the completion of squares formula

$$
\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I & -\Sigma_{11}^{-1} \Sigma_{12} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{11}^{-1} & 0 \\
0 & \left(\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-\Sigma_{21} \Sigma_{11}^{-1} & I
\end{array}\right]
$$

and so, setting $S=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{T} \Sigma^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}^{T} \Sigma_{11}^{-1} x_{1}+\left(x_{2}-\Sigma_{21} \Sigma_{11}^{-1} x_{1}\right)^{T} S^{-1}\left(x_{2}-\Sigma_{21} \Sigma_{11}^{-1} x_{1}\right)
$$

Proof: the marginal pdf of a Gaussian

Hence we have

$$
\begin{aligned}
p^{x_{1}}\left(x_{1}\right) & =c_{1} \exp \left(-\frac{1}{2} x_{1}^{T} \Sigma_{11}^{-1} x_{1}\right) \int_{x_{2}} \exp \left(-\frac{1}{2}\left(x_{2}-\Sigma_{21} \Sigma_{11}^{-1} x_{1}\right)^{T} S^{-1}\left(x_{2}-\Sigma_{21} \Sigma_{11}^{-1} x_{1}\right)\right) d x_{2} \\
& =c_{2} \exp \left(-\frac{1}{2} x_{1}^{T} \Sigma_{11}^{-1} x_{1}\right)
\end{aligned}
$$

Now c_{2} is determined, because $\int p^{x_{1}}(z) d z=1$, so we don't need to calculate it explicitly.

Therefore, if $x \sim \mathcal{N}(0, \Sigma)$ the marginal pdf of x_{1} is Gaussian, and

$$
x_{1} \sim \mathcal{N}\left(0, \Sigma_{11}\right)
$$

Example: marginal pdf for Gaussians

Suppose $\Sigma=\left[\begin{array}{cc}2 & 0.8 \\ 0.8 & 1\end{array}\right]$ and $x \sim \mathcal{N}(0, \Sigma)$. A simulation of 1000 points is below

- all blue and orange points (908) are within 90% confidence ellipsoid for x
- all blue and red points (899) are within 90% confidence interval for x_{1}

Degenerate Gaussian random vectors

- it's convenient to allow Σ singular, but still $\Sigma=\Sigma^{T}$ and $\Sigma \geq 0$ this means that in some directions, x is not random at all
- obviously density formula does not hold; instead write

$$
\Sigma=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]^{T}
$$

where $Q=\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right]$ is orthogonal, and $\Sigma_{1}>0$
columns of Q_{1} are orthonormal basis for range (Σ) columns of Q_{2} are orthonormal basis for null (Σ)

- let $\left[\begin{array}{c}z \\ w\end{array}\right]=Q^{T} x$; then

$$
\begin{aligned}
z & \sim \mathcal{N}\left(Q_{1}^{T} \mu, \Sigma_{1}\right) \text { is non-degenerate Gaussian } \\
w & =Q_{2}^{T} \mu \text { is not random }
\end{aligned}
$$

Changes of variables for random vectors

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies

- h is one-to-one and onto; i.e., h is invertible
- Both h and h^{-1} are differentiable, with continuous derivative

The derivative of h at x is $D h(x)$, the Jacobian matrix

$$
(D h(x))_{i j}=\frac{\partial h_{i}}{\partial x_{j}}(x)
$$

Then for any $A \subset \mathbb{R}^{n}$

$$
\int_{h(A)} f(x) d x=\int_{A} f(h(y))|\operatorname{det} D h(y)| d y
$$

Changes of variables for random vectors

Suppose $x: \Omega \rightarrow \mathbb{R}^{n}$ is a random vector, and $y=g(x)$, where g is invertible, and g and g^{-1} are continuously differentiable. Then

$$
p^{y}(y)=\frac{p^{x}\left(g^{-1}(y)\right)}{\left|\operatorname{det}(D g)\left(g^{-1}(y)\right)\right|}
$$

As in the scalar case, this holds because

$$
\begin{aligned}
\operatorname{Prob}(y \in A) & =\int_{A} p^{y}(y) d y \\
& =\int_{g^{-1}(A)} p^{x}(x) d x \\
& =\int_{A} \frac{p^{x}\left(g^{-1}(y)\right)}{\left|\operatorname{det}(D g)\left(g^{-1}(y)\right)\right|} d y
\end{aligned}
$$

where $D\left(g^{-1}\right)(y)=\left((D g)\left(g^{-1}(y)\right)\right)^{-1}$

Example: linear transformations

Consider $y=A x+b$, where $A \in \mathbb{R}^{n \times n}$ is invertible. Then

$$
p^{y}(y)=\frac{p^{x}\left(A^{-1}(y-b)\right)}{|\operatorname{det} A|}
$$

Linear transformations of Gaussians

a linear function of a Gaussian random vector is a Gaussian random vector

Suppose $x \sim \mathcal{N}\left(\mu_{x}, \Sigma_{x}\right), A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Consider the linear function of x

$$
y=A x+b
$$

- we already know how means and covariances transform; we have

$$
\mathbf{E}(y)=A \mathbf{E} x+b \quad \operatorname{cov}(y)=A \operatorname{cov}(x) A^{T}
$$

- The amazing fact is that y is Gaussian

Linear transformations of Gaussians

To show this, first suppose $A \in \mathbb{R}^{n \times n}$ is invertible. Let $\mu_{y}=A \mu_{x}+b$ and $\Sigma_{y}=A \Sigma_{x} A^{T}$.

We know

$$
p^{x}(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}\left(\operatorname{det} \Sigma_{x}\right)^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma_{x}^{-1}(x-\mu)\right)
$$

So
$p^{y}(y)=\frac{p^{x}\left(A^{-1}(y-b)\right)}{|\operatorname{det} A|}$

$$
\begin{aligned}
& =\frac{1}{|\operatorname{det} A|(2 \pi)^{\frac{n}{2}}\left(\operatorname{det} \Sigma_{x}\right)^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(y-b-A \mu_{x}\right)^{T}\left(A^{-1}\right)^{T} \Sigma_{x}^{-1} A^{-1}\left(y-b-A \mu_{x}\right)\right) \\
& =\frac{1}{(2 \pi)^{\frac{n}{2}}\left(\operatorname{det} \Sigma_{y}\right)^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(y-\mu_{y}\right)^{T} \Sigma_{y}^{-1}\left(y-\mu_{y}\right)\right)
\end{aligned}
$$

Non-invertible linear transformations of Gaussians

Suppose $A \in \mathbb{R}^{m \times n}$, and $y=A x$ where $x \sim \mathcal{N}\left(0, \Sigma_{x}\right)$. The SVD of A is

$$
A=U \Sigma V^{T}=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right]
$$

This decomposes the map into

$$
y=U w \quad\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\Sigma z \quad\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=V^{T} x
$$

Non-invertible linear transformations of Gaussians

Since V is invertible, we know $z \sim \mathcal{N}\left(0, \Sigma_{z}\right)$, where

$$
\Sigma_{z}=\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] \Sigma_{x}\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]
$$

We know z is Gaussian, hence the marginal z_{1} is Gaussian

$$
z_{1} \sim \mathcal{N}\left(0, V_{1}^{T} \Sigma_{x} V_{1}\right)
$$

Also $w_{2}=0$, and since Σ_{1} is invertible, w_{1} is Gaussian

$$
w_{1} \sim \mathcal{N}\left(0, \Sigma_{1} V_{1}^{T} \Sigma_{x} V_{1} \Sigma_{1}\right)
$$

Since $w=U^{T} y$, we have y is a degenerate Gaussian random vector where

- $w_{1}=U_{1}^{T} y$ are the components of y that are Gaussian
- $w_{2}=0$ are the components of y that are not random

Full-rank case

When range $(A)=\mathbb{R}^{m}$, i.e., A is full row rank, we have

$$
y \sim \mathcal{N}\left(0, A \Sigma_{x} A^{T}\right)
$$

Because the SVD of A is

$$
A=U\left[\begin{array}{ll}
\Sigma_{1} & 0
\end{array}\right]\left[\begin{array}{l}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right]
$$

Then $y=U w_{1}$, and since U is invertible, we have

$$
y \sim \mathcal{N}\left(0, U \Sigma_{1} V_{1}^{T} \Sigma_{x} V_{1} \Sigma_{1} U^{T}\right)
$$

Example: simulating Gaussian random vectors

In Matlab, its easy to generate $x \sim \mathcal{N}(0, I)$

$$
x=r \operatorname{andn}(n, 1)
$$

to generate $y \sim \mathcal{N}(\mu, \Sigma)$, we can use

$$
y=\sum^{\frac{1}{2}} x+\mu
$$

extremely useful for simulation

Example: Gaussian random force on mass

- x is the sequence of applied forces, so $f(t)=x_{j}$ for t in the interval $[j-1, j]$.
- y_{1}, y_{2} are final position and velocity
- $y=A x$ where $A=\left[\begin{array}{ccccccccccc}9.5 & 8.5 & 7.5 & 6.5 & 5.5 & 4.5 & 3.5 & 2.5 & 1.5 & 0.5 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
- suppose the forces are Gaussian, and the vector $x \sim \mathcal{N}(0, \Sigma)$, where

Example: Gaussian random force on mass

the covariance of y is

$$
\Sigma_{y}=A \Sigma A^{T}
$$

the 90% confidence ellipsoid is

$$
\left\{y \in \mathbb{R}^{2} \mid y^{T} \Sigma_{y}^{-1} y \leq F_{\chi_{n}^{2}}^{-1}(0.9)\right\}
$$

Components of a Gaussian random vector

Suppose $x: \Omega \rightarrow \mathbb{R}^{n}$ and $x \sim \mathcal{N}(0, \Sigma)$, and let $c \in \mathbb{R}^{n}$ be a unit vector

Let $y=c^{T} x$

- y is the component of x in the direction c
- y is Gaussian, with $\mathbf{E} y=0$ and $\operatorname{cov}(y)=c^{T} \Sigma c$
- So $\mathbf{E}\left(y^{2}\right)=c^{T} \Sigma c$
- The unit vector c that minimizes $c^{T} \Sigma c$ is the eigenvector of Σ with the smallest eigenvalue. Then

$$
\mathbf{E}\left(y^{2}\right)=\lambda_{\text {min }}
$$

Distributions and densities in Matlab

Matlab has useful functions in the statistics toolbox:

$$
\begin{array}{cl}
\text { chi2pdf } & \text { Chi square density } \\
\text { normpdf } & \text { Gaussian density } \\
\text { chi2cdf } & \text { Chi square cdf } \\
\text { normcdf } & \text { Gaussian cdf } \\
\text { chi2inv } & \text { Chi square inverse cdf } \\
\text { norminv } & \text { Gaussian inverse cdf }
\end{array}
$$

as well as gamma and erf

