8 - 1 Continuous random vectors

8 - Continuous random vectors

- Mean-square deviation
- Mean-variance decomposition
- Gaussian random vectors
- The Gamma function
- The χ^2 distribution
- Confidence ellipsoids
- Marginal density functions
- Example: marginal pdfs for Gaussians
- Degenerate Gaussian random vectors
- Changes of variables for random vectors
- Linear transformations of Gaussians
- Example: Gaussian force on mass
- Distributions and densities in Matlab

Continuous random vectors

The random vector $x : \Omega \to \mathbb{R}^n$ has *induced pdf* $p^x : \mathbb{R}^n \to \mathbb{R}$.

For any subset $A \subset \mathbb{R}^n$, we have

$$\mathbf{Prob}(x \in A) = \int_A p^x(x) \, dx$$

the *mean* or *expected value* of x is

$$\mathbf{E}(x) = \int_{\mathbb{R}^n} x p^x(x) \, dx$$

the *covariance* of x is

$$\mathbf{cov}(x) = \mathbf{E}\left((x-\mu)(x-\mu)^T\right) = \int_{\mathbb{R}^n} (x-\mu)(x-\mu)^T p^x(x) \, dx$$

Mean-square deviation

Suppose $x: \Omega \to \mathbb{R}^n$ is a random variable, with mean μ .

The *mean square deviation from the mean* is given by

$$\mathbf{E}(\|x-\mu\|^2) = \mathbf{trace}\,\mathbf{cov}(x)$$

Because

$$\begin{split} \mathbf{E} \big(\|x - \mu\|^2 \big) &= \mathbf{E} \big((x - \mu)^T (x - \mu) \big) \\ &= \mathbf{E} \operatorname{trace} \big((x - \mu)^T (x - \mu) \big) \\ &= \mathbf{E} \operatorname{trace} \big((x - \mu) (x - \mu)^T \big) \qquad \text{since } \operatorname{trace} (AB) = \operatorname{trace} (BA) \\ &= \operatorname{trace} \mathbf{E} \big((x - \mu) (x - \mu)^T \big) \qquad \text{since } \mathbf{E} Ax = A \mathbf{E} x \end{split}$$

The mean-variance decomposition

The *mean square* of a random variable $x : \Omega \to \mathbb{R}^n$ is

$$\mathbf{E}(\|x\|^2) = \mathbf{trace}(\mathbf{cov}(x)) + \|\mathbf{E}x\|^2$$

This holds because

$$\mathbf{E}(||x||^{2}) = \mathbf{E}(||x - \mu + \mu||^{2})$$

= $\mathbf{E}(||x - \mu||^{2} + 2\mu^{T}(x - \mu) + ||\mu||^{2})$
= $\mathbf{E}(||x - \mu||^{2}) + 2\mu^{T}\mathbf{E}(x - \mu) + ||\mu||^{2}$

Correlation and covariance

The *correlation matrix* of random vector x is

$$\mathbf{corr}(x) = \mathbf{E}(xx^T)$$

• If
$$\mathbf{E} x = 0$$
 then $\mathbf{corr}(x) = \mathbf{cov}(x)$

• The mean square of x is $\mathbf{E}(||x||^2) = \mathbf{trace corr}(x)$

The correlation-covariance decomposition is

$$\mathbf{corr}(x) = \mathbf{cov}(x) + (\mathbf{E} x)(\mathbf{E} x^T)$$

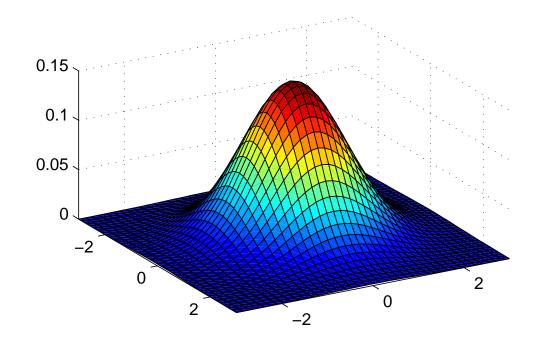
proof takes the same approach as the mean-variance formula

Gaussian random vectors

The random variable $x: \Omega \to \mathbb{R}^n$ is called *Gaussian* if it has induced pdf

$$p^{x}(x) = \frac{1}{(2\pi)^{\frac{n}{2}} (\det \Sigma)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)\right)$$

write this as $x \sim \mathcal{N}(\mu, \Sigma),$ here $\Sigma = \Sigma^T$ and $\Sigma > 0$



Gaussian random vectors

Suppose $x \sim \mathcal{N}(\mu, \Sigma)$. Then

• The mean of x is

$$\mathbf{E} x = \mu$$

• The covariance of x is

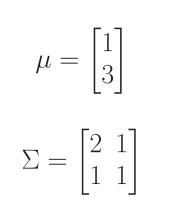
$$\mathbf{cov}(x) = \Sigma$$

Ellipsoids

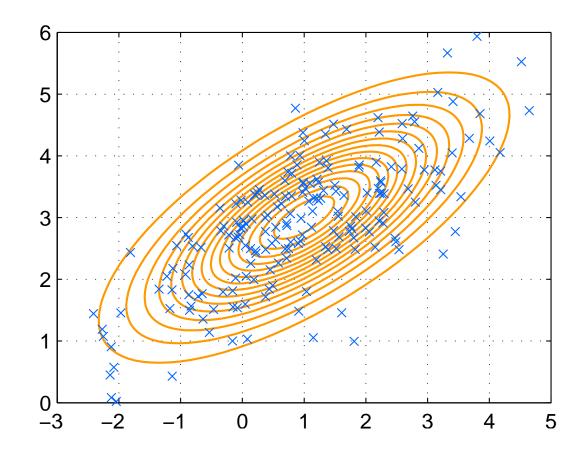
the Gaussian pdf is constant on the surface of the ellipsoids

$$S_{\alpha} = \left\{ x \in \mathbb{R}^n \mid (x - \mu)^T \Sigma^{-1} (x - \mu) \le \alpha \right\}$$

center is at μ , semiaxis lengths are $\sqrt{\alpha\lambda_i(\Sigma)}$.



contours at $p(x) = 0.01, 0.02, \ldots$



Gamma function

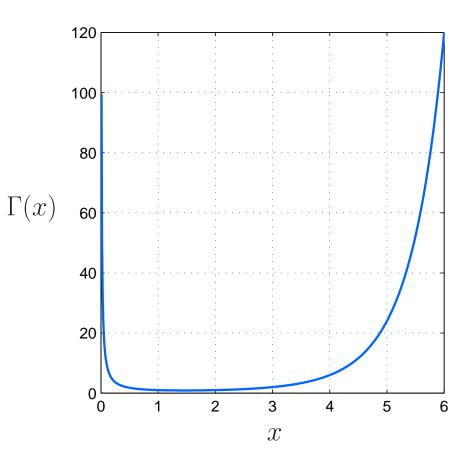
the gamma function is

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \qquad \text{for } x > 0$$

for
$$x > 0$$

$$\Gamma(x+1) = x \Gamma(x)$$

$$\Gamma(1) = 1$$
, so for integer $x > 1$
 $\Gamma(x) = (x - 1)!$

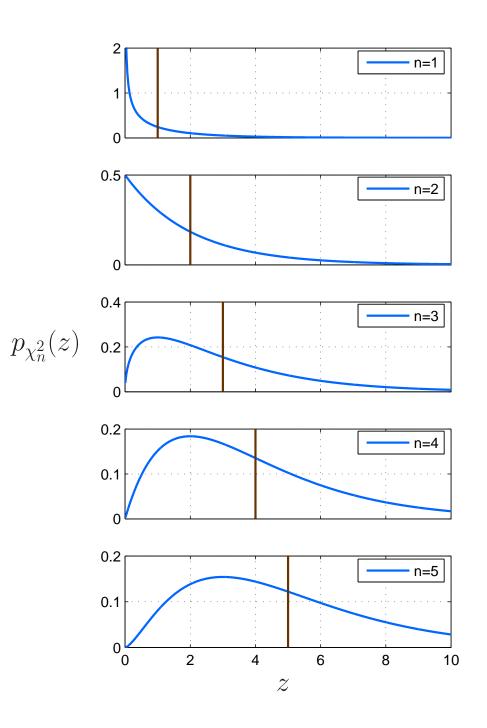


The χ^2 distribution

The χ^2_n probability density function is

$$p_{\chi_n^2}(z) = \frac{1}{2^{\frac{n}{2}}\Gamma(n/2)} z^{\frac{n}{2}-1} e^{-\frac{z}{2}}$$

- A family of pdfs, one for each n > 0
- If $z \sim \chi^2_n$, then $\mathbf{E} \, z = n$



Gaussian random vectors and confidence ellipsoids

Suppose $x: \Omega \to \mathbb{R}^n$ is Gaussian, i.e., $x \sim \mathcal{N}(\mu, \Sigma)$. Define the random variable

$$z = (x - \mu)^T \Sigma^{-1} (x - \mu)$$

which is a measure of the distance of x from μ

• z has a χ^2_n distribution

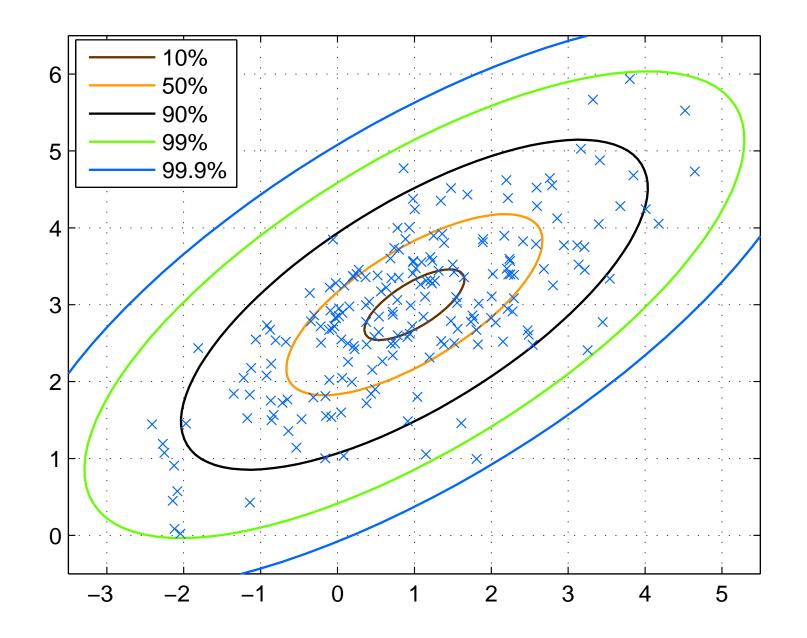
• Hence prob. that x lies in the ellipsoid $S_{\alpha} = \{ x \in \mathbb{R}^n \mid (x - \mu)^T \Sigma^{-1} (x - \mu) \le \alpha \}$

$$\mathbf{Prob}(x \in S_{\alpha}) = F_{\chi^2_n}(\alpha)$$

• for example
$$F_{\chi_n^2}(\alpha) \approx \begin{cases} \frac{1}{2} & \text{if } \alpha = n \\ 0.9 & \text{if } \alpha = n + 2\sqrt{n} \end{cases}$$
 90% confidence ellipsoid

Confidence ellipsoids

The plot shows the confidence ellipsoids and 200 sample points.



Marginal probability density functions

Suppose
$$x : \Omega \to \mathbb{R}^n$$
 is an RV with pdf $p^x : \mathbb{R}^n \to \mathbb{R}$, and $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, where $x_1 \in \mathbb{R}^r$.

Define the *marginal pdf* of x_1 to be the function p^{x_1} such that

$$\mathbf{Prob}(x_1 \in W) = \int_W p^{x_1}(z) \, dz \qquad \text{for all } W \subset R^r$$

We also know that

$$\mathbf{Prob}(x_1 \in W) = \int_W \int_{x_2 \in \mathbb{R}^{n-r}} p^x(x_1, x_2) \, dx_2 \, dx_1$$

Since these are equal, we have

$$p^{x_1}(x_1) = \int_{x_2 \in \mathbb{R}^{n-r}} p^x(x_1, x_2) \, dx_2$$

8 - 14 Continuous random vectors

The marginal pdf of a Gaussian

Suppose $x \sim \mathcal{N}(\mu, \Sigma)$, and

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \qquad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

Let's look at the component x_1

• Since $x_1 = \begin{bmatrix} I & 0 \end{bmatrix} x$, we have the mean

$$\mathbf{E} \, x_1 = \begin{bmatrix} I & 0 \end{bmatrix} \mu = \mu_1$$

and also the covariance

$$\mathbf{cov}(x_1) = \begin{bmatrix} I & 0 \end{bmatrix} \Sigma \begin{bmatrix} I \\ 0 \end{bmatrix} = \Sigma_{11}$$

• In fact, the random variable x_1 is *Gaussian*; this is not obvious

Proof: the marginal pdf of a Gaussian

Assume for convenience that $\mathbf{E} x = 0$. The marginal pdf of x_1 is

$$p^{x_1}(x_1) = \int_{x_2} c_1 \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) dx_2$$

We have, by the completion of squares formula

$$\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}^{-1} = \begin{bmatrix} I & -\Sigma_{11}^{-1} \Sigma_{12} \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma_{11}^{-1} & 0 \\ 0 & (\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12})^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -\Sigma_{21} \Sigma_{11}^{-1} & I \end{bmatrix}$$

and so, setting $S = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^T \Sigma_{11}^{-1} x_1 + (x_2 - \Sigma_{21} \Sigma_{11}^{-1} x_1)^T S^{-1} (x_2 - \Sigma_{21} \Sigma_{11}^{-1} x_1)$$

8 - 16 Continuous random vectors

Proof: the marginal pdf of a Gaussian

Hence we have

$$p^{x_1}(x_1) = c_1 \exp\left(-\frac{1}{2}x_1^T \Sigma_{11}^{-1} x_1\right) \int_{x_2} \exp\left(-\frac{1}{2}(x_2 - \Sigma_{21} \Sigma_{11}^{-1} x_1)^T S^{-1}(x_2 - \Sigma_{21} \Sigma_{11}^{-1} x_1)\right) dx_2$$
$$= c_2 \exp\left(-\frac{1}{2}x_1^T \Sigma_{11}^{-1} x_1\right)$$

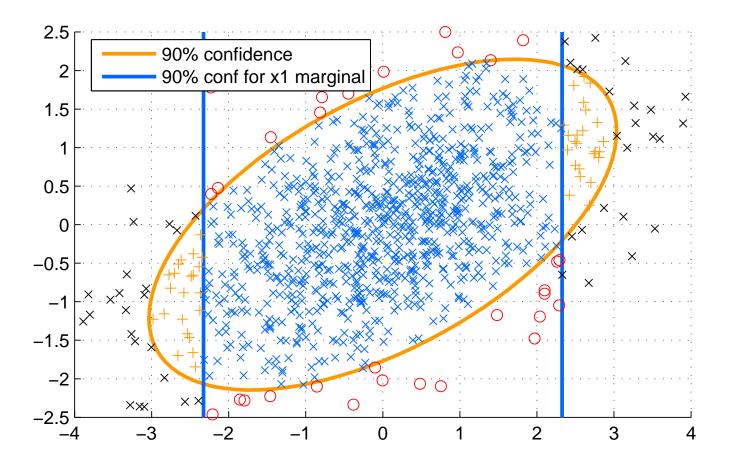
Now c_2 is determined, because $\int p^{x_1}(z) dz = 1$, so we don't need to calculate it explicitly.

Therefore, if $x \sim \mathcal{N}(0, \Sigma)$ the marginal pdf of x_1 is *Gaussian*, and

 $x_1 \sim \mathcal{N}(0, \Sigma_{11})$

Example: marginal pdf for Gaussians

Suppose $\Sigma = \begin{bmatrix} 2 & 0.8 \\ 0.8 & 1 \end{bmatrix}$ and $x \sim \mathcal{N}(0, \Sigma)$. A simulation of 1000 points is below



- all blue and orange points (908) are within 90% confidence ellipsoid for x
- all blue and red points (899) are within 90% confidence interval for x_1

Degenerate Gaussian random vectors

- it's convenient to allow Σ singular, but still $\Sigma = \Sigma^T$ and $\Sigma \ge 0$ this means that in some directions, x is not random at all
- obviously density formula does not hold; instead write

$$\Sigma = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}^T$$

where $Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}$ is orthogonal, and $\Sigma_1 > 0$

columns of Q_1 are orthonormal basis for $\operatorname{range}(\Sigma)$ columns of Q_2 are orthonormal basis for $\operatorname{null}(\Sigma)$

• let
$$\begin{bmatrix} z \\ w \end{bmatrix} = Q^T x$$
; then

 $z \sim \mathcal{N}(Q_1^T \mu, \Sigma_1)$ is non-degenerate Gaussian $w = Q_2^T \mu \text{ is not random}$

Changes of variables for random vectors

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, and $h: \mathbb{R}^n \to \mathbb{R}^n$ satisfies

- *h* is one-to-one and onto; i.e., *h* is invertible
- Both h and h^{-1} are differentiable, with continuous derivative

The derivative of h at x is Dh(x), the Jacobian matrix

$$(Dh(x))_{ij} = \frac{\partial h_i}{\partial x_j}(x)$$

Then for any $A \subset \mathbb{R}^n$

$$\int_{h(A)} f(x) \, dx = \int_A f(h(y)) \left| \det Dh(y) \right| \, dy$$

8 - 20 Continuous random vectors

Changes of variables for random vectors

Suppose $x : \Omega \to \mathbb{R}^n$ is a *random vector*, and y = g(x), where g is invertible, and g and g^{-1} are continuously differentiable. Then

$$p^{y}(y) = \frac{p^{x}(g^{-1}(y))}{\left|\det(Dg)(g^{-1}(y))\right|}$$

As in the scalar case, this holds because

$$\begin{aligned} \mathbf{Prob}(y \in A) &= \int_{A} p^{y}(y) \, dy \\ &= \int_{g^{-1}(A)} p^{x}(x) \, dx \\ &= \int_{A} \frac{p^{x}(g^{-1}(y))}{\left|\det(Dg)(g^{-1}(y))\right|} \, dy \end{aligned}$$

where $D(g^{-1})(y) = \Bigl((Dg)\bigl(g^{-1}(y)\bigr)\Bigr)^{-1}$

Example: linear transformations

Consider y = Ax + b, where $A \in \mathbb{R}^{n \times n}$ is *invertible*. Then

$$p^{y}(y) = \frac{p^{x} \left(A^{-1}(y-b) \right)}{\left| \det A \right|}$$

Linear transformations of Gaussians

a linear function of a Gaussian random vector is a Gaussian random vector

Suppose $x \sim \mathcal{N}(\mu_x, \Sigma_x)$, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Consider the linear function of x

$$y = Ax + b$$

• we already know how means and covariances transform; we have

$$\mathbf{E}(y) = A \mathbf{E} x + b \qquad \mathbf{cov}(y) = A \mathbf{cov}(x) A^T$$

Linear transformations of Gaussians

To show this, first suppose $A \in \mathbb{R}^{n \times n}$ is *invertible*. Let $\mu_y = A\mu_x + b$ and $\Sigma_y = A\Sigma_x A^T$.

We know

$$p^{x}(x) = \frac{1}{(2\pi)^{\frac{n}{2}} (\det \Sigma_{x})^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{T}\Sigma_{x}^{-1}(x-\mu)\right)$$

So

$$p^{y}(y) = \frac{p^{x} \left(A^{-1}(y-b)\right)}{\left|\det A\right|}$$

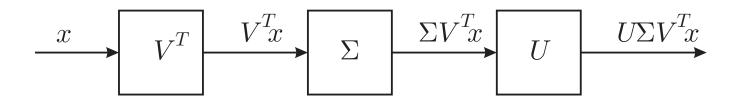
$$= \frac{1}{|\det A|(2\pi)^{\frac{n}{2}} (\det \Sigma_x)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(y-b-A\mu_x)^T (A^{-1})^T \Sigma_x^{-1} A^{-1}(y-b-A\mu_x)\right)$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}} (\det \Sigma_y)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(y-\mu_y)^T \Sigma_y^{-1}(y-\mu_y)\right)$$

Non-invertible linear transformations of Gaussians

Suppose $A \in \mathbb{R}^{m \times n}$, and y = Ax where $x \sim \mathcal{N}(0, \Sigma_x)$. The SVD of A is

$$A = U\Sigma V^{T} = \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_{1}^{T} \\ V_{2}^{T} \end{bmatrix}$$



This decomposes the map into

$$y = Uw$$
 $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \Sigma z$ $\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = V^T x$

Non-invertible linear transformations of Gaussians

Since V is invertible, we know $z \sim \mathcal{N}(0, \Sigma_z)$, where

$$\Sigma_z = \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} \Sigma_x \begin{bmatrix} V_1 & V_2 \end{bmatrix}$$

We know z is Gaussian, hence the marginal z_1 is Gaussian

 $z_1 \sim \mathcal{N}(0, V_1^T \Sigma_x V_1)$

Also $w_2 = 0$, and since Σ_1 is invertible, w_1 is Gaussian $w_1 \sim \mathcal{N}(0, \Sigma_1 V_1^T \Sigma_x V_1 \Sigma_1)$

Since $w = U^T y$, we have y is a *degenerate Gaussian random vector* where

- $w_1 = U_1^T y$ are the components of y that are Gaussian
- $w_2 = 0$ are the components of y that are not random

Full-rank case

When $\operatorname{range}(A) = \mathbb{R}^m$, i.e., A is full row rank, we have $y \sim \mathcal{N}(0, A\Sigma_x A^T)$

Because the SVD of A is

$$A = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$$

Then $y = Uw_1$, and since U is invertible, we have

 $y \sim \mathcal{N}(0, U\Sigma_1 V_1^T \Sigma_x V_1 \Sigma_1 U^T)$

8 - 27 Continuous random vectors

Example: simulating Gaussian random vectors

In Matlab, its easy to generate $x \sim \mathcal{N}(0, I)$

x=randn(n,1)

to generate $y \sim \mathcal{N}(\mu, \Sigma)$, we can use

$$y = \Sigma^{\frac{1}{2}}x + \mu$$

extremely useful for simulation

Example: Gaussian random force on mass

- x is the sequence of applied forces, so $f(t) = x_j$ for t in the interval [j 1, j].
- y_1 , y_2 are final position and velocity

•
$$y = Ax$$
 where $A = \begin{bmatrix} 9.5 & 8.5 & 7.5 & 6.5 & 5.5 & 4.5 & 3.5 & 2.5 & 1.5 & 0.5 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$

• suppose the forces are Gaussian, and the vector $x \sim \mathcal{N}(0, \Sigma)$, where

$$\Sigma = \begin{bmatrix} 2 & 1 & & & \\ 1 & 2 & 1 & & \\ & 1 & 2 & 1 & & \\ & & 1 & 2 & 1 & & \\ & & & 1 & 2 & 1 & \\ & & & & 1 & 2 & 1 & \\ & & & & & 1 & 2 & 1 \\ & & & & & & 1 & 2 & 1 \\ & & & & & & 1 & 2 & 1 \\ & & & & & & 1 & 2 & 1 \\ & & & & & & 1 & 2 & 1 \\ & & & & & & 1 & 2 & 1 \end{bmatrix}$$

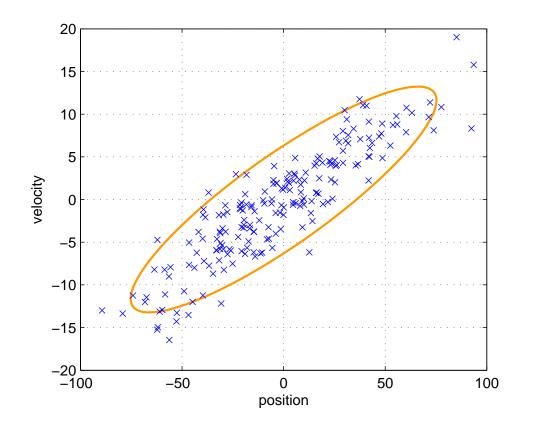
Example: Gaussian random force on mass

the covariance of y is

$$\Sigma_y = A \Sigma A^T$$

the 90% confidence ellipsoid is

$$\left\{ y \in \mathbb{R}^2 \mid y^T \Sigma_y^{-1} y \le F_{\chi_n^2}^{-1}(0.9) \right\}$$



Components of a Gaussian random vector

Suppose $x: \Omega \to \mathbb{R}^n$ and $x \sim \mathcal{N}(0, \Sigma)$, and let $c \in \mathbb{R}^n$ be a unit vector

Let $y = c^T x$

- y is the component of x in the direction c
- y is Gaussian, with $\mathbf{E} y = 0$ and $\mathbf{cov}(y) = c^T \Sigma c$
- So $\mathbf{E}(y^2) = c^T \Sigma c$
- The unit vector c that minimizes $c^T \Sigma c$ is the eigenvector of Σ with the smallest eigenvalue. Then

$$\mathbf{E}(y^2) = \lambda_{\min}$$

Distributions and densities in Matlab

Matlab has useful functions in the statistics toolbox:

- chi2pdf Chi square density
- normpdf Gaussian density
- chi2cdf Chi square cdf
- normcdf Gaussian cdf
- chi2inv Chi square inverse cdf
- norminv Gaussian inverse cdf

as well as gamma and erf