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Continuous random vectors

The random vector = : {2 — R" has induced pdf p* : R" — R.

For any subset A C R", we have

Prob(z € A) = /Apx(x) dx

the mean or expected value of x is

the covariance of x is

cov(e) = B((x — pw — ") = [ (&= e — )" (o) do
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Mean-square deviation

Suppose x : {2 — R" is a random variable, with mean .

The mean square deviation from the mean is given by

E(||z — u|]*) = trace cov(z)

Because
E(||z — pll*) = E((z — p)' (z — p))
— Etrace((z — 1)7(z — 1))
— Etrace((z — u)(x — p)T)  since trace(AB) = trace(BA)
= trace E((z — p)(x — p)")  since EAz = AEux
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The mean-variance decomposition

The mean square of a random variable z : {2 — R" is

E(||x||2) = trace(cov(a:)) + | Ez|?

This holds because

B(|l2]?) = B(llz — p+ )
(lz = pll® + 2u" (z — p) + || ul?)
(lz = pll?) + 26" E(z — p) + ||l

S. Lall, Stanford 2011.01.25.01
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Correlation and covariance

The correlation matrix of random vector z is

corr(z) = E(xz’)

e If Ex =0 then corr(x) = cov(z)

o The mean square of z is E(||z||?) = trace corr(z)

The correlation-covariance decomposition is

corr(z) = cov(z) + (Ez)(Ez’)

proof takes the same approach as the mean-variance formula
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Gaussian random vectors

The random variable x : {2 — R" is called Gaussian if it has induced pdf

“(x) = ex —1:1:— Iy —
) = ey oo e - )5 e )

write this as 2z ~ N(u, X)), here ¥ = X1 and X > 0

015«

Ol\ ///’O
005 /////z/"l"
: T

0> (OO



8 - 7 Continuous random vectors S. Lall, Stanford 2011.01.25.01
Gaussian random vectors

Suppose x ~ N (11, >2). Then

e The mean of 2 is

e [he covariance of z is

cov(zr) =X
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Ellipsoids

the Gaussian pdf is constant on the surface of the ellipsoids
Se = {xER” ] (x — p)' Sz —p) Sa}

center is at y, semiaxis lengths are \/a)\;(2).

Example:

contours at p(x) = 0.01,0.02, . ..
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Gamma function

the gamma function is

['(z) = / t"ltetdt  forx >0
0

forx > 0 120 7 7
[z +1) = 2T(@) o
['(1) =1, so for integer x > 1 | |
M) = (z— 1) ; ;
o
20L

0 1 2 3 4 5 6
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The y? distribution

The x* probability density function is

P2 = )

e A family of pdfs, one for each n > 0

o If 2z~ Y% then Ez=n

0.5

S. Lall, Stanford 2011.01.25.01

n=2




8 - 11 Continuous random vectors S. Lall, Stanford 2011.01.25.01

Gaussian random vectors and confidence ellipsoids

Suppose x : 0 — R" is Gaussian, i.e., x ~ N (u, ). Define the random variable

2= (z—p) Sz - p)

which is a measure of the distance of x from u

e 2z has a )\ distribution

e Hence prob. that z lies in the ellipsoid S, = {z € R" | (z — )"z — p) < a }

Prob(x € S,) = F\2()

% ifa=n
o for example F\2(a) ~
! 0.9 ifa=n+2yn  90% confidence ellipsoid
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Confidence ellipsoids

The plot shows the confidence ellipsoids and 200 sample points.

10%
50%
90%
99%
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Marginal probability density functions

Suppose = : {2 — R" is an RV with pdf p* : R" — R, and x = [x
2

x
1] . Where 1 € R".

Define the marginal pdf of x; to be the function p*! such that

Prob(z, e W) = / pz)dz  forall W C R’
W

We also know that

Prob(z; € W) = / / pe(x1, x9) dxs day
W J xgeR"—T

Since these are equal, we have

p(xy) = / p* (21, x2) dz)
ro€ERMTT
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The marginal pdf of a Gaussian

Suppose x ~ N (p, ), and

Let's look at the component x

e Since r; = [] O] x, we have the mean

Exzy = [I 0] p=m

and also the covariance

cov(ay) = [I 0] H N

e In fact, the random variable 21 is Gaussian; this is not obvious

S. Lall, Stanford 2011.01.25.01
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Proof: the marginal pdf of a Gaussian

Assume for convenience that Exz = 0. The marginal pdf of z; is

T 1 X g 11T
i [ S5 )

We have, by the completion of squares formula

1 B B
Yu S| [T =SS (B0 0 I 0
2i91 2129 0 I 0 (ZQQ — 22121_11212>_1 —22121_11 I

and so, setting S = Dlog — 22121_11212

T
x 1| —~ - N 1
[ 1] x [ 1] =21 '+ (22— DX w) ST (@ — Sy m)
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Proof: the marginal pdf of a Gaussian

Hence we have

1 3 1 B _ _
px1<$1) = C1eXp <—§${2111$1> / exp(—§($2 — 2212111$1>TS 1(1’2 — 2212111$1>) dZUQ
x2

1 _
= (g exXp (—galeZHlazl)

Now ¢ is determined, because /pxl(z) dz =1, so we don't need to calculate it explicitly.

Therefore, if x ~ N(0,Y) the marginal pdf of x is Gaussian, and
Tl N(O, 211>
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Example: marginal pdf for Gaussians

Suppose Y = 028 018 and x ~ N(0,). A simulation of 1000 points is below
25 o R T SR CIE O KR :

90% confidence
2r 90% conf for x1 marginal |

1.5

1

-2.5

e all blue and orange points (908) are within 90% confidence ellipsoid for x

e all blue and red points (899) are within 90% confidence interval for x;
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Degenerate Gaussian random vectors

e it's convenient to allow X singular, but still X = YWand >0
this means that in some directions, 2 is not random at all

e obviously density formula does not hold; instead write
21 0 T
= [Q1 Q)] [ . O] Q1 Q)]

where () = [Ql Qg] is orthogonal, and >; > 0

columns of (), are orthonormal basis for range(X)
columns of () are orthonormal basis for null()

2l AT
o let [w] = ()* x; then

2~ N(Q111,3) is non-degenerate Gaussian

w = Q4 v is not random
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Changes of variables for random vectors
Suppose f : R" — R is continuous, and h : R" — R" satisfies
e h is one-to-one and onto: i.e., h is invertible

e Both A and h~! are differentiable, with continuous derivative

The derivative of h at x is Dh(x), the Jacobian matrix

(Dh(w),, = G4

Then for any A C R”

/ d:z:—/f ) |det Dh(y)| dy

S. Lall, Stanford 2011.01.25.01
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Changes of variables for random vectors

Suppose z : {2 — R" is a random vector, and y = g(x), where g is invertible, and ¢ and

g~ ! are continuously differentiable. Then

(971 ()

P = D) (g )]

As in the scalar case, this holds because

Prob(y € A) = / () dy

where D(g7)(y) = ((Dg) (9—1(y>))
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Example: linear transformations

Consider y = Az + b, where A € R"*" is invertible. Then
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Linear transformations of Gaussians

a linear function of a Gaussian random vector is a Gaussian random vector

Suppose & ~ N (pz, X,), A € R™™ and b € R™. Consider the linear function of x

y=Ax+0b

e we already know how means and covariances transform; we have

Ey)=AExz+b cov(y) = Acov(z)A’

e The amazing fact is that y is Gaussian
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Linear transformations of Gaussians

To show this, first suppose A € R"*" is invertible. Let j1, = Ap, +band &, = AS, AT,

We know
() = iy o5l - WS )
So
piy) =L (ﬁ;&’_ )
~ A (27)1% ARSI (—%(y —b— Ap,) (AT ATy — b~ Am))

1 1 Twe—1
T 2n)f (det 3, exp(_é(y ) Ry y>)

0|3
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Non-invertible linear transformations of Gaussians

Suppose A € R™*" and y = Az where x ~ N(0,%,). The SVD of A is

¥ 0] [V
A::UZVTz[UlUﬂ[O(J[%A

T Vi SV USViy

This decomposes the map into

y=Uw [w1] = 2.z [Z1] — Vg

W2
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Non-invertible linear transformations of Gaussians

Since V is invertible, we know z ~ A(0,X.), where

T
5, = [QT] 5, [Vi V]

We know z is Gaussian, hence the marginal z; is Gaussian

21~ N(0, V2, W)

Also w9 = 0, and since >J; is invertible, wy is Gaussian

wy ~ N(0, 51 V'S, Vi%)

S. Lall, Stanford 2011.01.25.01

Since w = Uy, we have v is a degenerate Gaussian random vector where

o w; = U]y are the components of y that are Gaussian

e w; = (0 are the components of y that are not random
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Full-rank case

When range(A) = R™, i.e., A is full row rank, we have
y ~N(0, A5, A")

Because the SVD of A is

Then y = Uwy, and since U is invertible, we have

y ~ N0, U VIS, e, uh)

S. Lall, Stanford 2011.01.25.01
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Example: simulating Gaussian random vectors

In Matlab, its easy to generate x ~ N(0, ])

x=randn(n,1)

to generate y ~ N (1, ), we can use

y:Z%x+,LL

extremely useful for simulation
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Example: Gaussian random force on mass

e 1 is the sequence of applied forces, so f(t) = x; for ¢ in the interval [j — 1, j].

e 11, U9 are final position and velocity

9.5 85 7.5 6.5 5.5 4.5 3.5 25 1.5 0.5

e y=dArwhere A= """

e suppose the forces are Gaussian, and the vector x ~ A(0, X)), where

5 1 .
1 21
L2
1

1
2
1

1
2
1

]
21 >/
1 21 /1111
1921

] 9
]

1
2_
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Example: Gaussian random force on mass

the covariance of y is

the 90% confidence ellipsoid is

velocity

2iy =

AX AT

{y c R* | yTEy_ly < Fg%l(OQ) }

20 =
150 X
X
‘ S XX«
y >§<>>$5<2<X>§<%‘XX
A X % KX x
%z% g % X
X x X X %
Oor : x%&%'% X 56
Gk X T
" X, %X%;;% X
—5— rxrx :@()S%( % .
: XX ; X
X KX
_10- ,XH X, ,,,,,
K X X %
X
XX
-15 x %
X
_O 1 1
-100 -50 0 50 100

position

S. Lall, Stanford 2011.01.25.01
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Components of a Gaussian random vector

Suppose x : 0 — R" and = ~ N (0,Y), and let ¢ € R" be a unit vector

Let y = c'x

e 7 is the component of x in the direction c
e y is Gaussian, with Ey = 0 and cov(y) = ¢! 3c
e So E(y?) = c!Xc

e The unit vector ¢ that minimizes ¢! Yc is the eigenvector of ¥ with the smallest
eigenvalue. Then

E<y2> — )\min
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Distributions and densities in Matlab

Matlab has useful functions in the statistics toolbox:

chi2pdf
normpdf

chi2cdf
normcdf

chi?2inv
norminv

Chi square density
Gaussian density

Chi square cdf
Gaussian cdf

Chi square inverse cdf
Gaussian inverse cdf

as well as gamma and erf

S. Lall, Stanford 2011.01.25.01



