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15 - Estimating moments

• The central limit theorem

• Example: sums of IID random variables

• Estimating the mean of a random vector

• Example: estimating the mean of a Gaussians

• The Chebyshev bound and the χ2 test

• The Chebyshev bound for Gaussians

• Example: estimating frequencies

• Estimating the covariance for arbitrary distributions

• The sample covariance

• The sample covariance is unbiased

• Estimating the mean when the covariance is unknown

• The student’s t-distribution

• Confidence intervals with unknown covariance
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The central limit theorem

Suppose x1, x2, . . . are IID random variables, each with mean µ, variance σ2. Define the
sample mean sn and normalized sample mean zn

sn =
1

n

n
∑

i=1

xi zn =

√
n

σ
(sn − µ)

Notice that

• Both sn and zn are random variables

• E sn = µ and cov(sn) =
σ2

n

• E zn = 0 and cov(zn) = 1
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The central limit theorem

The surprising fact is that sn and zn are asymptotically Gaussian; that is

lim
n→∞

Prob(zn ≤ a) = FN (a)

Here FN is the cdf of a Gaussian with mean 0 and covariance 1.

FN (a) =

∫ a

−∞
1√
2π

e−
x2

2 dx
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Sums of IID random variables

The pmf of zn for various values of n; note the graph tends to a ‘Gaussian shape’, although
the pmf is discrete
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Sums of IID random variables

The cdf of zn for various values of n; orange curve is FN
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Estimating the mean of a random vector

x1, x2, . . . , are IID random vectors xi : Ω → R
m with mean µ and covariance Σ.

We can estimate the mean µ, using the sample mean sn

sn =
1

n

n
∑

i=1

xi

This has the properties that

• sn is unbiased, i.e., its expected value is correct

E sn = µ

• sn is consistent, i.e, as the number of measurements becomes large, the probability
of an error of ε shrinks to zero

for any ε > 0 lim
n→∞

Prob
(

|sn − µ| ≥ ε
)

= 0
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Example: estimating the mean of a Gaussian

The covariance of the sample mean is

cov(sn) =
Σ

n

If the xi are Gaussian then we have the 90% confidence ellipsoids

Prob

(

sT
nΣ−1sn ≤ 1

n
F−1

χ2
m

(0.9)

)

= 0.9
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Estimating the mean of a Gaussian

suppose Σ =

[

2 1
1 1

]

, µ =

[

2
1

]

2048 data points, along with the ellipsoids for n = 32, 128, 512, 2048.

1.4 1.6 1.8 2 2.2 2.4 2.6
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

−2 0 2 4 6
−3

−2

−1

0

1

2

3

4

5



15 - 9 Estimating moments S. Lall, Stanford 2011.03.01.01

Estimating the mean for arbitrary distributions

Suppose x1, x2, . . . are IID random variables, each with mean µ, variance σ2.

The Chebyshev inequality gives a confidence bound for the sample mean

Prob
(

|sn − µ| ≤ ε
)

≥ 1 − σ2

nε2

because

cov(sn) =
cov(xi)

n

• Above is true irrespective of the pdf on xi

• However sn tends to a Gaussian as n becomes large

• So instead of using the Chebyshev bound, we can use the χ2 confidence bound

• often called the χ2 test
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The Chebyshev bound and the χ2 test

Suppose xi : Ω → R are IID random variables, each with mean µ and covariance σ2.

The Chebyshev inequality gives

Prob
(

|sn − µ| ≤ ε
)

≥ 1 − σ2

nε2

But we know for large n that sn is close to Gaussian, so

Prob
(

|sn − µ| ≤ ε
)

≈ Fχ2
1

(

nε2

σ2

)
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The Chebyshev bound for Gaussians
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• x ∼ N (0, 1)

• Orange curve is y = 1 − Fχ2
1
(ε2), that is y = Prob(|x − E x| ≥ ε)

• Blue curve is the Chebyshev bound y = ε−2

• 90% confidence with χ2 for ε ≈ 1.65, with Chebyshev is ε ≈ 3.16
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The Chebyshev bound and the χ2 test

• For probability p, with Chebyshev the confidence interval half-width is

εcheby =
σ

√

n(1 − p)

• With χ2 the confidence interval half-width is

εchi =
σ
√

F−1
χ2

1
(p)

√
n

Although the χ2 bound is tighter, both scale as
1√
n

For both bounds, we need to know the covariance; we’ll fix this, using the t-test . . .
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Example: estimating frequencies

We can use this for example when estimating the pmf of a discrete random variable

• the frequency sn = 1
n

∑n
i=1 Ij is a sum of IID indicator functions Ij, each of which is

a Bernoulli random variable

• hence the frequencies are approximately Gaussian for large n

The confidence bounds given by Chebyshev and χ2 are shown below.
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Estimating covariance for arbitrary distributions

How do we estimate Σ? The answer depends on whether we know µ or not.

If we know µ, let

Tn =
1

n

n
∑

i=1

(xi − µ)(xi − µ)T

• Tn is a unbiased estimate of Σ, i.e.,

ETn =
1

n

n
∑

i=1

E
(

(xi − µ)(xi − µ)T
)

=
1

n
nΣ

= Σ

• Tn is also consistent, by the law of large numbers

• For confidence bounds, we would need the distribution.
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The sample covariance

The sample covariance Qn is

Qn =
1

n − 1

n
∑

i=1

(xi − sn)(xi − sn)
T

• When we don’t know µ, we use the sample mean sn in place of the mean µ

• But, the factor in front of the sum is
1

n − 1
not

1

n
.

• With this choice, the estimate is unbiased.
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Proof that the sample covariance is unbiased

we’d like to find EQn; we have

Qn =
1

n − 1

n
∑

i=1

(xi − sn)(xi − sn)
T

=
1

n − 1

n
∑

i=1

(

(xi − µ)(xi − µ)T − µµT + µxT
i + xiµ

T − snx
T
i − xis

T
n + sns

T
n

)

=
1

n − 1

n
∑

i=1

(

(xi − µ)(xi − µ)T
)

− n

n − 1
(sn − µ)(sn − µ)T

• because sn =
1

n

n
∑

i=1

xi

• similar to E
(

‖x‖2
)

= trace
(

cov(x)
)

+ ‖E x‖2
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Proof that the sample covariance is unbiased

the expectation of the second term is

E
(

(sn − µ)(sn − µ)T
)

= cov(sn)

=
Σ

n

so we have

EQn =
1

n − 1

n
∑

i=1

E
(

(xi − µ)(xi − µ)T
)

− 1

n − 1
Σ

=
1

n − 1

n
∑

i=1

Σ − 1

n − 1
Σ

= Σ

• Hence the sample covariance Qn is an unbiased estimate of the covariance Σ

• it can also be shown that Qn is consistent
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Estimating the mean when the covariance is unknown

We saw earlier that one can construct confidence intervals as follows

• The sample means sn are approximately Gaussian

• Hence we have the confidence bounds

Prob

(|sn − µ|√n

σ
≤ ε

)

≈ Fχ2
1
(ε2)

• We can use these to estimate the mean µ

But to do this, we need to know the covariance σ2

What do we do when we do not know σ2?
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The student’s t-distribution

scalar random variable x ∈ R is called t-distributed with n degrees of freedom if

ftn(x) = Cn

(

1 +
x2

n

)−(n+1)/2

where Cn is the normalizing constant

Cn =
Γ
(

(n + 1)/2)
)

√
nπ Γ(n/2)

(matlab function tpdf, tcdf and tinv)

named after William Gosset, who was a chemist for Guinness brewery in Dublin from 1899
to 1935. Guinness would not let him publish under his own name

he invented the t-distribution for quality control in brewing
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Confidence intervals with unknown covariance

When we do not know σ2, we use instead the sample covariance Qn

if x1, . . . , xn are scalar Gaussian random variables xi ∼ N (µ, σ2), then

(sn − µ)
√

n√
Qn

has a t-distribution with n − 1 degrees of freedom, so

Prob

(

−z ≤ (sn − µ)
√

n√
Qn

≤ z

)

=

∫ z

−z

ftn−1(x) dx

= 1 − 2Ftn−1(−z)

the confidence interval width grows approximately as
1√
n
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Comparison of known and unknown covariance

The pdfs for N (0, 1) and the t-distribution are below
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• the t pdf is slightly wider than the Gaussian

• because we have less information about the mean when the variance is unknown

• as the no. of measurements n becomes large, the t-pdf tends to the Gaussian pdf
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Distributions and densities in Matlab

Matlab has useful functions in the statistics toolbox:

chi2pdf Chi square density
normpdf Gaussian density
tpdf t-density

chi2cdf Chi square cdf
normcdf Gaussian cdf
tcdf t-cdf

chi2inv Chi square inverse cdf
norminv Gaussian inverse cdf
tinv t-inverse cdf

as well as gamma and erf


