15 - Estimating moments

- The central limit theorem
- Example: sums of IID random variables
- Estimating the mean of a random vector
- Example: estimating the mean of a Gaussians
- The Chebyshev bound and the χ^2 test
- The Chebyshev bound for Gaussians
- Example: estimating frequencies
- Estimating the covariance for arbitrary distributions
- The sample covariance
- The sample covariance is unbiased
- Estimating the mean when the covariance is unknown
- The student's t-distribution
- Confidence intervals with unknown covariance

The central limit theorem

Suppose x_1, x_2, \ldots are IID random variables, each with mean μ , variance σ^2 . Define the sample mean s_n and normalized sample mean z_n

$$s_n = \frac{1}{n} \sum_{i=1}^n x_i \qquad \qquad z_n = \frac{\sqrt{n}}{\sigma} (s_n - \mu)$$

Notice that

• Both s_n and z_n are *random variables*

•
$$\mathbf{E} s_n = \mu$$
 and $\mathbf{cov}(s_n) = \frac{\sigma^2}{n}$

•
$$\mathbf{E} z_n = 0$$
 and $\mathbf{cov}(z_n) = 1$

The central limit theorem

The surprising fact is that s_n and z_n are *asymptotically Gaussian*; that is

$$\lim_{n \to \infty} \mathbf{Prob}(z_n \le a) = F_{\mathcal{N}}(a)$$

Here $F_{\mathcal{N}}$ is the cdf of a Gaussian with mean 0 and covariance 1.

$$F_{\mathcal{N}}(a) = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

Sums of IID random variables

The pmf of z_n for various values of n; note the graph tends to a 'Gaussian shape', although the pmf is *discrete*

Sums of IID random variables

The cdf of z_n for various values of n; orange curve is F_N

Estimating the mean of a random vector

 x_1, x_2, \ldots , are IID random vectors $x_i : \Omega \to \mathbb{R}^m$ with mean μ and covariance Σ .

We can *estimate* the mean μ , using the *sample mean* s_n

$$s_n = \frac{1}{n} \sum_{i=1}^n x_i$$

This has the properties that

• s_n is *unbiased*, i.e., its expected value is correct

$$\mathbf{E} s_n = \mu$$

• s_n is *consistent*, i.e., as the number of measurements becomes large, the probability of an error of ε shrinks to zero

for any
$$\varepsilon > 0$$
 $\lim_{n \to \infty} \operatorname{Prob}(|s_n - \mu| \ge \varepsilon) = 0$

15 - 7 Estimating moments

Example: estimating the mean of a Gaussian

The covariance of the sample mean is

$$\mathbf{cov}(s_n) = \frac{\Sigma}{n}$$

If the x_i are Gaussian then we have the 90% confidence ellipsoids

$$\mathbf{Prob}\left(s_{n}^{T}\Sigma^{-1}s_{n} \leq \frac{1}{n}F_{\chi_{m}^{2}}^{-1}(0.9)\right) = 0.9$$

Estimating the mean of a Gaussian

suppose
$$\Sigma = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \mu = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

2048 data points, along with the ellipsoids for n = 32, 128, 512, 2048.

15 - 9 Estimating moments

Estimating the mean for arbitrary distributions

Suppose x_1, x_2, \ldots are IID random variables, each with mean μ , variance σ^2 .

The Chebyshev inequality gives a confidence bound for the sample mean

$$\operatorname{Prob}(|s_n - \mu| \le \varepsilon) \ge 1 - \frac{\sigma^2}{n\varepsilon^2}$$

because

$$\mathbf{cov}(s_n) = \frac{\mathbf{cov}(x_i)}{n}$$

- Above is true irrespective of the pdf on x_i
- However s_n tends to a Gaussian as n becomes large
- So instead of using the Chebyshev bound, we can use the χ^2 confidence bound
- often called *the* χ^2 *test*

The Chebyshev bound and the χ^2 test

Suppose $x_i : \Omega \to \mathbb{R}$ are IID random variables, each with mean μ and covariance σ^2 .

The Chebyshev inequality gives

$$\operatorname{Prob}(|s_n - \mu| \le \varepsilon) \ge 1 - \frac{\sigma^2}{n\varepsilon^2}$$

But we know for large n that s_n is close to Gaussian, so

$$\operatorname{Prob}(|s_n - \mu| \le \varepsilon) \approx F_{\chi_1^2}\left(\frac{n\varepsilon^2}{\sigma^2}\right)$$

The Chebyshev bound for Gaussians

• $x \sim \mathcal{N}(0, 1)$

- Orange curve is $y = 1 F_{\chi_1^2}(\varepsilon^2)$, that is $y = \mathbf{Prob}(|x \mathbf{E}\,x| \ge \varepsilon)$
- Blue curve is the Chebyshev bound $y = \varepsilon^{-2}$
- 90% confidence with χ^2 for $\varepsilon \approx 1.65$, with Chebyshev is $\varepsilon \approx 3.16$

15 - 12 Estimating moments

The Chebyshev bound and the χ^2 test

• For probability p, with Chebyshev the confidence interval half-width is

$$\varepsilon_{\rm cheby} = \frac{\sigma}{\sqrt{n(1-p)}}$$

• With χ^2 the confidence interval half-width is

$$\varepsilon_{\rm chi} = \frac{\sigma \sqrt{F_{\chi_1^2}^{-1}(p)}}{\sqrt{n}}$$

Although the χ^2 bound is tighter, both scale as $\frac{1}{\sqrt{n}}$

For both bounds, we need to know the covariance; we'll fix this, using the t-test ...

Example: estimating frequencies

We can use this for example when estimating the pmf of a discrete random variable

- the frequency $s_n = \frac{1}{n} \sum_{i=1}^{n} I_j$ is a sum of IID indicator functions I_j , each of which is a Bernoulli random variable
- hence the frequencies are approximately Gaussian for large n

The confidence bounds given by Chebyshev and χ^2 are shown below.

Estimating covariance for arbitrary distributions

How do we estimate Σ ? The answer depends on whether we know μ or not. If we know μ , let

$$T_n = \frac{1}{n} \sum_{i=1}^n (x_i - \mu) (x_i - \mu)^T$$

• T_n is a *unbiased estimate* of Σ , i.e.,

$$\mathbf{E} T_n = \frac{1}{n} \sum_{i=1}^n \mathbf{E} \left((x_i - \mu) (x_i - \mu)^T \right)$$
$$= \frac{1}{n} n \Sigma$$
$$= \Sigma$$

- T_n is also *consistent*, by the law of large numbers
- For confidence bounds, we would need the distribution.

The sample covariance

The sample covariance Q_n is

$$Q_n = \frac{1}{n-1} \sum_{i=1}^n (x_i - s_n) (x_i - s_n)^T$$

- When we don't know μ , we use the sample mean s_n in place of the mean μ
- But, the factor in front of the sum is $\frac{1}{n-1}$ not $\frac{1}{n}$.
- With this choice, the estimate is unbiased.

15 - 16 Estimating moments

Proof that the sample covariance is unbiased

we'd like to find $\mathbf{E} Q_n$; we have

$$Q_{n} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - s_{n})(x_{i} - s_{n})^{T}$$

= $\frac{1}{n-1} \sum_{i=1}^{n} \left((x_{i} - \mu)(x_{i} - \mu)^{T} - \mu\mu^{T} + \mu x_{i}^{T} + x_{i}\mu^{T} - s_{n}x_{i}^{T} - x_{i}s_{n}^{T} + s_{n}s_{n}^{T} \right)$
= $\frac{1}{n-1} \sum_{i=1}^{n} \left((x_{i} - \mu)(x_{i} - \mu)^{T} \right) - \frac{n}{n-1} (s_{n} - \mu)(s_{n} - \mu)^{T}$

• because
$$s_n = \frac{1}{n} \sum_{i=1}^n x_i$$

• similar to $\mathbf{E}(||x||^2) = \mathbf{trace}(\mathbf{cov}(x)) + ||\mathbf{E}x||^2$

Proof that the sample covariance is unbiased

the expectation of the second term is

$$\mathbf{E}((s_n - \mu)(s_n - \mu)^T) = \mathbf{cov}(s_n)$$
$$= \frac{\Sigma}{n}$$

so we have

$$\mathbf{E} Q_n = \frac{1}{n-1} \sum_{i=1}^n \mathbf{E} \left((x_i - \mu) (x_i - \mu)^T \right) - \frac{1}{n-1} \Sigma$$
$$= \frac{1}{n-1} \sum_{i=1}^n \Sigma - \frac{1}{n-1} \Sigma$$
$$= \Sigma$$

- Hence the sample covariance Q_n is an *unbiased estimate* of the covariance Σ
- it can also be shown that Q_n is *consistent*

Estimating the mean when the covariance is unknown

We saw earlier that one can construct confidence intervals as follows

- The sample means s_n are approximately Gaussian
- Hence we have the confidence bounds

$$\operatorname{Prob}\left(\frac{|s_n - \mu|\sqrt{n}}{\sigma} \le \varepsilon\right) \approx F_{\chi_1^2}(\varepsilon^2)$$

• We can use these to *estimate the mean* μ

But to do this, we need to know the *covariance* σ^2

What do we do when we do not know σ^2 ?

The student's t-distribution

scalar random variable $x \in \mathbb{R}$ is called *t*-distributed with *n* degrees of freedom if

$$f_{t_n}(x) = C_n \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$$

where C_n is the normalizing constant

$$C_n = \frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\,\Gamma(n/2)}$$

(matlab function tpdf, tcdf and tinv)

named after William Gosset, who was a chemist for Guinness brewery in Dublin from 1899 to 1935. Guinness would not let him publish under his own name

he invented the t-distribution for quality control in brewing

Confidence intervals with unknown covariance

When we do not know σ^2 , we use instead the sample covariance Q_n

if x_1, \ldots, x_n are scalar Gaussian random variables $x_i \sim \mathcal{N}(\mu, \sigma^2)$, then

$$\frac{(s_n - \mu)\sqrt{n}}{\sqrt{Q_n}}$$

has a t-distribution with n-1 degrees of freedom, so

$$\operatorname{Prob}\left(-z \leq \frac{(s_n - \mu)\sqrt{n}}{\sqrt{Q_n}} \leq z\right) = \int_{-z}^{z} f_{t_{n-1}}(x) \, dx$$
$$= 1 - 2F_{t_{n-1}}(-z)$$

the confidence interval width grows *approximately* as $\frac{1}{\sqrt{n}}$

Comparison of known and unknown covariance

The pdfs for $\mathcal{N}(0,1)$ and the t-distribution are below

- the *t* pdf is slightly wider than the Gaussian
- because we have less information about the mean when the variance is unknown
- as the no. of measurements n becomes large, the t-pdf tends to the Gaussian pdf

Distributions and densities in Matlab

Matlab has useful functions in the statistics toolbox:

chi2pdf	Chi square density
normpdf	Gaussian density
tpdf	<i>t</i> -density
chi2cdf	Chi square cdf
normcdf	Gaussian cdf
tcdf	<i>t</i> -cdf
chi2inv	Chi square inverse cdf
norminv	Gaussian inverse cdf
tinv	<i>t</i> -inverse cdf

as well as gamma and erf