15 -1 Estimating moments

15 - Estimating moments

The central limit theorem

Example: sums of [ID random variables

Estimating the mean of a random vector

Example: estimating the mean of a Gaussians

The Chebyshev bound and the y? test

The Chebyshev bound for Gaussians

Example: estimating frequencies

Estimating the covariance for arbitrary distributions
The sample covariance

The sample covariance is unbiased

Estimating the mean when the covariance is unknown
The student’s t-distribution

Confidence intervals with unknown covariance

S. Lall, Stanford 2011.03.01.01



15 -2 Estimating moments S. Lall, Stanford 2011.03.01.01

The central limit theorem

Suppose T, T9, . .. are [ID random variables, each with mean 1, variance 0. Define the
sample mean s,, and normalized sample mean z,

n < o

1 n
sn:—in 2n = —(8p, — 1)
1=1

Notice that

e Both s,, and z,, are random variables

0.2

e Es, =pand cov(s,) =—
n

e Ez,=0and cov(z,) =1
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The central limit theorem

The surprising fact is that s,, and z,, are asymptotically Gaussian; that is

lim Prob(z, < a)= Fy(a)

n—aoo

Here F)y is the cdf of a Gaussian with mean 0 and covariance 1.

X

@ 2
FN(a):/ ﬁe‘T dx



15 - 4 Estimating moments S. Lall, Stanford 2011.03.01.01

Sums of |ID random variables

The pmf of z,, for various values of n; note the graph tends to a ‘Gaussian shape’, although
the pmf is discrete
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Sums of 1ID random variables

The cdf of z, for various values of n; orange curve is F)
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Estimating the mean of a random vector

x1,T9, ..., are |ID random vectors z; : {2 — R" with mean 1 and covariance ..

We can estimate the mean p, using the sample mean s,,
1 n
?/:

This has the properties that

e s, is unbiased, i.e., its expected value is correct

Es,=pu

e s, is consistent, i.e, as the number of measurements becomes large, the probability
of an error of £ shrinks to zero

for any € > 0 lim Prob(|s, —p| >¢) =0

n—aoo
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Example: estimating the mean of a Gaussian

The covariance of the sample mean is

)
cov(s,) = —
n

If the x; are Gaussian then we have the 90% confidence ellipsoids

1
Prob (sgzlsn < — 21(0.9)) =0.9

n Xm

S. Lall, Stanford 2011.03.01.01
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Estimating the mean of a Gaussian

21 2

suppose 2. = IR

2048 data points, along with the ellipsoids for n = 32, 128, 512, 2048.
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Estimating the mean for arbitrary distributions

Suppose T, X2, ... are |ID random variables, each with mean 1, variance o2

The Chebyshev inequality gives a confidence bound for the sample mean

0.2

Prob(|s, —pu| <e) >1— >

because
cov(s,) = —COV(%)
n

e Above is true irrespective of the pdf on x;
e However s, tends to a Gaussian as n becomes large
e So instead of using the Chebyshev bound, we can use the y? confidence bound

e often called the y* test
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The Chebyshev bound and the y? test

Suppose z; : €2 — R are IID random variables, each with mean ;. and covariance 2.

The Chebyshev inequality gives

0.2

Prob(|s, —u| <e) >1— —

But we know for large n that s, is close to Gaussian, so

ne*
Prob(|s, —pu| <¢) ~ Fo (—2>
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The Chebyshev bound for Gaussians

0.8

04r

0.2

o =z~ N(0,1)
e Orange curveisy =1 — Fx%<€2>' that is y = Prob(|x — Ez| > ¢)
2

e Blue curve is the Chebyshev bound y = ¢~

e 90% confidence with y? for ¢ ~ 1.65, with Chebyshev is € ~ 3.16
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The Chebyshev bound and the y? test

e For probability p, with Chebyshev the confidence interval half-width is

o)
Echeby =
" /n(l—p)

e With y? the confidence interval half-width is

o\ /F e ()

/n

Echi =

1
Although the y? bound is tighter, both scale as —

/n

For both bounds, we need to know the covariance; we'll fix this, using the t-test ...
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Example: estimating frequencies

S. Lall, Stanford 2011.03.01.01

We can use this for example when estimating the pmf of a discrete random variable

e the frequency s, = %2?21 I; is a sum of IID indicator functions I;, each of which is

a Bernoulli random variable

e hence the frequencies are approximately Gaussian for large n

The confidence bounds given by Chebyshev and y? are shown below.
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Estimating covariance for arbitrary distributions

How do we estimate >.? The answer depends on whether we know 1 or not.
If we know 1, let

e I is a unbiased estimate of X, i.e.,

ET, = %ZE«% — ) —p)")

1

= —n
n

=

e T, is also consistent, by the law of large numbers

e For confidence bounds, we would need the distribution.
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The sample covariance

The sample covariance @),, is

Qn = 7y 2ol = sl = )"

e When we don't know 1, we use the sample mean s,, in place of the mean p

1 1
not —.
n—1 n

e But, the factor in front of the sum is

e With this choice, the estimate is unbiased.
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Proof that the sample covariance is unbiased

we'd like to find E (),,; we have

1
Qn — n— 1 Z(xz 3n)<xz Sn>T
i=1
1 n
T -1 Z(<x2 — )@ — )" = o = s — s, + Snsg)
i=1
- — i(@%‘ — (@i — )T = (50— )50 — )T
n—14 n—1

1 n
e because s, = — g x;
n <
1=

o similar to E(||z||?) = trace(cov(z)) + ||E z||?
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Proof that the sample covariance is unbiased

the expectation of the second term is

E((sy — 1)(spn — p)") = cov(s,)

_Z
n
so we have
EQ, = — zn:E((-r'—u)(iv—u)T)— Ly
" n_1¢:1 ' ' n—1
- 1
— > — >
n—lizl n—1

= )

e Hence the sample covariance (),, is an unbiased estimate of the covariance

e it can also be shown that (),, is consistent
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Estimating the mean when the covariance is unknown

We saw earlier that one can construct confidence intervals as follows
e The sample means s,, are approximately Gaussian

e Hence we have the confidence bounds

Prob(‘sn — 1l < 5) ~ I %(62)
o

X

e We can use these to estimate the mean [

But to do this, we need to know the covariance o*

What do we do when we do not know o2?

S. Lall, Stanford 2011.03.01.01



15-19 Estimating moments S. Lall, Stanford 2011.03.01.01

The student’s t-distribution
scalar random variable x € R is called t-distributed with n degrees of freedom if
562 —(n+1)/2

where (), is the normalizing constant

- _ Ln+1)/2))
" VarD(n/2)

(matlab function tpdf, tcdf and tinv)

named after William Gosset, who was a chemist for Guinness brewery in Dublin from 1899
to 1935. Guinness would not let him publish under his own name

he invented the t-distribution for quality control in brewing
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Confidence intervals with unknown covariance

2

When we do not know o, we use instead the sample covariance (),

if 71,...,x, are scalar Gaussian random variables z; ~ N (u, o%), then

(s — Wvn
V@

has a ¢-distribution with n — 1 degrees of freedom, so

Prob| —z < (50 \_/Qii\/ﬁ <z| = /ZZ fi, (z)dz

=1 — 2Ftn—l<_z>

. . . : 1
the confidence interval width grows approximately as —

/n
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Comparison of known and unknown covariance

The pdfs for A'(0,1) and the t-distribution are below
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e the t pdf is slightly wider than the Gaussian
e because we have less information about the mean when the variance is unknown

e as the no. of measurements n becomes large, the t-pdf tends to the Gaussian pdf
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Distributions and densities in Matlab

Matlab has useful functions in the statistics toolbox:

chi2pdf
normpdf
tpdf

chi2cdf
normcdf
tcdf

chi?2inv
norminv
tinv

Chi square density
Gaussian density
t-density

Chi square cdf
Gaussian cdf

t-cdf

Chi square inverse cdf
Gaussian inverse cdf
t-inverse cdf

as well as gamma and erf

S. Lall, Stanford 2011.03.01.01



